
Age of Wonders 4 Official Modding Guide

Introduction​ 3
Modding Rules​ 4
Getting Started​ 5

Using Package Manager​ 5
Creating a new Mod​ 7
Publishing a Mod​ 8
Testing a Mod​ 8
Mod Compatibility and Load Order​ 9
Debugging with CLog​ 9
Common types of errors to look for:​ 13

Editing Existing Packages​ 14
Resource Browser​ 16
Adding New Content​ 17

Adding Packages​ 17
Adding Resources​ 17

Adding Content Libraries​ 18
FBX Notes​ 20

Preparing For Export - Regular Meshes​ 21
Importing - Rigs​ 22
Preparing For Export - Skinned Meshes​ 24

Modularity System Overview​ 25
Adding Text​ 32
Adding a New Tome (Example Mod)​ 34

Tome Setup​ 34
Adding Research Skills​ 36
Adding a Strategic Spell​ 39
Adding a Tactical Spell​ 41
Adding a Unit Enchantment​ 43
Adding a Transformation​ 45
Adding a City Structure​ 47
Unlocking a Unit​ 48
Adding a Special Province Improvement​ 50

Adding a Hero Skill​ 53
Sieges​ 55

Siege Projects​ 56
Adding a Cultures​ 59

Culture Setup​ 59
Culture Research​ 61
Culture City Structures/Special Province Improvements​ 61
Culture Hero Skills​ 62

Units and Heroes​ 63
Creating a new Unit​ 63
Make a unit recruitable​ 64
Creating a Passive Property​ 64
Creating an Active Ability​ 65
Creating a Status Effect​ 66

Adding Race Traits​ 68
Body Traits​ 68
Mind traits​ 69
Society Traits​ 69

Adding Realm Traits​ 70
Geography Traits​ 71
Clime Traits​ 72
Inhabitants Traits​ 72
Presence Traits​ 74
Misc Traits​ 76

Making/Sharing Premade Factions​ 76
Adding Leader Customization Items​ 78
Making a Story Event​ 80
Adding Audio​ 83

Project Setup​ 83
Resource Setup​ 84
Changing Action Sound Effects​ 84
Changing Interface Sound Effects​ 85
Adding Music​ 85

Creating a Story Region​ 86
Creating the Region​ 86
Loading the Region​ 88

Glossary​ 89

Introduction
Welcome to the official Age of Wonders 4 modding guide! This guide is intended to get you
started with creating and publishing mods for Age of Wonders 4 using the PC version of the
game and the Paradox Launcher.

The guide starts off with several chapters on overall modding knowledge such as how to create
a mod package and the basics on using the different tools provided with a PC installation of Age
of Wonders 4.

Later chapters will cover specific content types such as Tomes and Units. It’s advised to read
through the first few chapters and then navigate to the chapter talking about the specific type of
content you’d like to create a mod for. Note that this guide may not cover all specific types of
content you can mod for Age of Wonders 4.

Disclaimer: Modding Tools are provided as a courtesy to fans. They might have different system
specifications from Age of Wonder 4, are not tech supported and are only available in English.

This guide is released alongside example content that can be used as reference or inspiration
for your mods! These mods are also fully playable and can be applied to your game!

Tome of Penguins mod

Massive Maps and 12 Players mod

Potato Spiders mod

You can also access the direct files including some example content files here.

Modding Rules
Triumph Studios and Paradox Interactive do not condone malicious or offensive content in
mods. But it is up to mod platform holders to report and/or take action against malicious or
offensive mods (such as Steam Workshop or Mod DB) and we cannot be held responsible for
the resulting experiences or damages caused by mods. We therefore ask modders to have fun
but be responsible when creating mods and for players using mods to take this into
consideration.

Below are some guidelines when creating mods:

●​ Only use the tools provided by Triumph Studios when creating mods, unless specified
otherwise.

●​ It is recommended to use POedit for creating and modifying additional text into the
game. A free trial version of the application is available online.

●​ It is recommended to use Maya for creating 3D assets for Age of Wonders 4 mods.

●​ We do not support modification of text provided by Triumph Studios or additional
translations.

●​ Try and keep modifying existing RPKs, CLBs and TAM files to a minimum, as they
decrease the compatibility of your mod with other mods and can go out of date whenever
a patch or update releases that contain changes to the files you’ve modified.

https://mods.paradoxplaza.com/mods/61420/Any
https://mods.paradoxplaza.com/mods/61421/Any
https://mods.paradoxplaza.com/mods/61422/Any
https://paradoxinteractive.files.com/f/cdcb6f89ddf99555

●​ When testing your mod, check if the modified content is also not present when your mod
is disabled.

●​ Using our Editor tools, you can look at existing content made by us (Triumph Studios),
you can use this as reference to figure out how specific content is set up and made.

●​ When making or copying files, it is best practice to keep the same folder structure as in
the game’s installation folder. By default when creating a new mod, new folders
replicating the original folder structure will be generated.

●​ As of this moment writing the guide. There is no mod support for Age of Wonders 4 on
consoles, nor are the modding tools provided in those versions of the game.

Getting Started
A Mod in Age of Wonders 4 consists of an .ACP file which is a package file that keeps track of
all files that the mod wishes to load in, and files such as .clb, .rpk and .tam that hold the content
the mod contains.
Mods can both override the game’s original files/content and/or add content on top of the
game’s original content.

Using Package Manager
Package Manager will be the main tool used for creating and managing mod content. It is also
used to launch other tools such as Resource Editor, Content Editor and Level Editor.

You can launch Package Manager by navigating to the installation folder of Age of Wonders 4
and finding PackageManager.exe.

Tip: when using Steam, you can easily find the installation folder by right clicking on Age of
Wonders 4 in your Steam Library, click on Properties, navigate to Local Files and click on
Browse…

You can also open up the Package Manager via Paradox Launcher, by navigating to Age of
Wonders 4 -> Game Settings -> Open Modding Tools -> Launch

Once opened up, let’s look at the elements in the interface that makes up Package Manager:

1.​ The Menu Bar with 3 Menu Categories each with their own Dropdown Menu
a.​ File - has all the functionality for creating, saving and loading Package files. A

single Package file keeps track of all the changes and files a single mod
contains.

b.​ Content - Here you can link Packages (.acp) or Resource Packs (.rpk) that are
necessary for this package to work. We also call this Dependencies. It helps
generate errors when a mod could not be loaded in due to missing particular
resources it depends on.

c.​ Tools - from here you can launch the other tools: Resource Editor for
Resources (.rpk files), Content Editor for Art Assets (.clb files), and Level
Editor for Combat Maps (.tam files).

2.​ The Included Files list keeps track of all the files that are included in this mod.
Whenever you place a new file in the mod’s folder, the Package will pick it up to be used
for the mod, and removing a file will also remove it from the Included Files list.

a.​ The Open Folder button underneath the list allows you to navigate to the Mod’s
folder where you need to place files for the Package to detect them and include
them in the mod.

b.​ The Refresh button allows the Package to detect new or removed files in the
Mod’s folder and will update the Included Files list.

3.​ The Title, Author and Description are text boxes that can be used to name the mod,
provide a description and credit yourself as the maker of your mod.

4.​ The Tags and Selected Tags list contain name tags to help identify what kind of content
your mod will contain. Double clicking on any tag in one of the list will move it to the
opposite list.

5.​ The Thumbnail Image of the mod will help create a visual icon for your mod. You can
link an image file using the Select Image button. Or remove the currently selected image
by clicking the Remove button.

6.​ The Version number of your mod will be used to detect newer versions of the same
mod.

a.​ If two mods with the same name are loaded, only the one with the highest
Version Number will be loaded.

Creating a new Mod
Once you have opened Package Manager, you can create new mod by following these steps:

1.​ Click File -> New
2.​ Name your package with the name you want to give your mod.
3.​ Fill in any info about the mod as described in Using Package Manager
4.​ Save by either hitting CTRL + S or navigating to File -> Save

a.​ Your Mod’s files will be saved in …\Users\[UserName]\Documents\Paradox
Interactive\Age of Wonders 4\Mods\[Modname]

The Included File list on the left will populate once we start adding actual content to the Mod!
For now it should only contain [modname].acp

Publishing a Mod
Once you are ready to wrap up your mod for distribution. Load up your mod’s .acp file in
Package Manager.

Then, click File -> Build and your mod will generate metadata, which is used when uploading
your mod.

Navigate to the folder of your mod, by default this should be​
C:\Users\%username%\Documents\Paradox Interactive\Age of Wonders 4\Mods

You can Zip the folder of your mod and upload it, or upload it unzipped! The uploading of Mods
to Steam or Paradox Mods is handled through the Paradox Launcher.

Within the Paradox Launcher

1.​ Navigate to the “All Installed Mods” tab
2.​ Click “Upload Mods” in the Top Right
3.​ Select the Mod you’d like to Upload
4.​ Fill in the Mod Data
5.​ Select the Platform you want to Upload to
6.​ Hit “Upload”

Testing a Mod
You can test a mod without publishing/zipping it. As long as the mod’s .acp file and its content
are in a separate folder in …\Users\[UserName]\Documents\Paradox Interactive\Age of
Wonders 4\Mods

You can then make sure the mod is detected and loaded using the Paradox Launcher:

1.​ Launch the Paradox Launcher and navigate to the Age of Wonders 4 launch window.
2.​ Underneath the Resume and Play button, a “Playset” dropdown can be found.
3.​ Open it and select “Add new playset” and give it a name.
4.​ You will be brought to the Playsets window with your new playset collected, press the

“Add Mods” button.
5.​ Tick the box of the mod(s) you wish to test!
6.​ When you’ve selected the correct mods to test, click “Add x to Playset”
7.​ Navigate back to the Age of Wonders 4 home window, check if the right playset is

selected, and hit Play! You’ll now be playing the game with your mod enabled.

It is often handy to check the following things when testing your mod:

-​ Can you start a session successfully?

-​ Do the modded features/content show up and work as intended in game?
-​ Does any custom text of your mod display correctly?

Mod Compatibility and Load Order
When testing your mod with other mods, it can be that certain changes of your mod may be
overwritten depending on what mod gets loaded last.

In Paradox Launcher, the list of mods in your Playset also depict the order which gets loaded,
this can be a little confusing, because the load order is from Top to Bottom but this means that
the Bottom Mod has the highest priority in overruling other mods.

Every time a new mod gets loaded, it will overrule previous mods if they modify the same
existing content.

To adjust your load order, you can hover your mouse near the load order number next to the
mod name. You can just click, hold and drag the mod up or down the list to adjust the order.

When testing your mod with other mods active, it’s best to load your mod last.

Debugging with CLog
Clog is a tool that helps with generating logs of sessions in Age of Wonders 4. These logs
contain information about what is happening in the background of the game. And often provide
handy information on what might be going wrong when you’re modding. CLog is always
activated while one of the tools or the game is open, but its UI may be hidden. By opening it, it
will provide you with active log tracking and also filtering a lot of log entries.

To open the UI of CLog, follow these steps:

1.​ Navigate to your local install folder, in case of Steam, this is something like C:\Program
Files (x86)\Steam\steamapps\common\Age of Wonders 4

2.​ Find and open CLog_UI.exe

3.​ This should open up a CLog window! While no session is active, it will provide a list of
logs that have already been stored. You can also find these yourselves in
C:\Users\%username%\Documents\Paradox Interactive\Age of Wonders 4\Logs

4.​ You can click any of the .clg files in the list to open the log in CLog’s UI. Alternatively,

when starting the game with CLog open, it will automatically open and update the
generated log for the new game, which should look something like this:​

5.​ In here, you’ll often be looking for particular entries to try and see if something you did

caused problems. More on how to use filters and find functions to hone in on particular
entries.

6.​ While having a tool open, a small active log will also be active in the tool’s UI, these are
stored in the …/Logs folder. They also show up in CLog’s list and can be opened there.

While having CLog open, it’s tricky to look for particular entries, luckily there are various ways
you can filter the log:

Using Type FIlters

-​ There are 3 types of log entries:
-​ Information

-​ Shown in gray.
-​ These are mostly notifications of particular events or processes in the

game, these can often be ignored and thus turned off. As they often do
not show up to inform you of anything gone wrong.

-​ Warning

-​ Shown in yellow.
-​ These often detect possibly problematic content or processes. But does

not mean the mentioned content or process is actually causing any
issues.

-​ Error

-​ Shown in red.
-​ These are the ones you’ll often be looking for. They point out problems

with content and processes. Such as broken resource links
(dependencies that could no longer be loaded because the linked
resource no longer exists or was moved) or settings in content that
invalidates the content.

-​ In CLog, you can filter in/out these types by ticking or unticking the boxes, the number

next to the boxes indicate the amount of entries of that particular type.

Using Threads

-​ This is usually not useful to modders, because it’s mainly for programmers to check what
processes are running in which thread. Best to ignore this for debugging purposes and
leave them all ticked. It often does not matter in what thread your process or content
runs.

Using Channels

-​ These are custom made filters by Triumph to categorize certain processes.

-​ Depending on what you’re working on, you can switch certain channels off. But it’s
advised to usually keep VERF/PlatformResources and Content/General active.

​

Using Text Matches

-​ In Text Matches, you can create Text filters that you’ll more commonly use. By clicking
the green + button, you can add a new text filter.

-​ Fill in a Name for the filter
-​ Fill in the Expression on which you want to filter with
-​ Choose to use Substring which detects if the Expression is present anywhere,

or use Regex for more specific searches using your Expression
-​ Once at least 1 Text Match filter exists, you can select it to use it. Or switch back to None

to have it off. You can also edit any existing Text Match Filter by clicking the pen icon to
its right.

Using Context
-​ Context will filter out which exact content packages the errors originate from.
-​ Switching everything off until only one pack is left to check if a specific pack contains

what error is not the best method here. Instead look at Group By.

Using Group By

-​ At the top of the filters is a Group By dropdown menu, by selecting a category there. It
will group all the Log entries based on the category chosen.

https://en.wikipedia.org/wiki/Regular_expression

-​ Group By content is especially handy in certain scenarios such as trying to track down if
your modded pack(s) specifically generates any errors.

-​ You can open and close any group of entries by clicking the arrow icon on each group.

Using Find String

-​ By pressing CTRL + F, you can use a good old reliable find function to find a particular
string.

-​ clicking the arrows up and down will cycle up or down in the log for the next entry
matching your expression.

We hope this helps you find issues with your mod! Note that particular errors, such as Scripts
not able to resolve, will not be logged in Clog.

Common types of errors to look for:
Broken Resource Links

●​ They can be seen as red links in our tools, or as Broken Resource Detected! In a log.
●​ This means a resource contains a link to another resource that has either been moved to

a different pack, removed, or a pack dependency has been changed. Meaning that the
linked resource can no longer be found.

●​ Note that copying a resource with CTRL + C and deleting the original will break
resource links because the newly pasted resource is treated as a new resource and will
have a different ID than its predecessor.

●​ To fix this:
○​ If the pack dependencies might have changed, make sure to add the right

Resource Pack dependencies in your packs by going to Content -> Resource
Packs and making sure the right files are in the list.

○​ If the resource was copied or removed, simply replace the link to the copied
resource or (none)

Double Resource ID detected

●​ You’ll usually get this as an Assert (pop up error) while loading the game.
●​ May be caused by a resource existing twice in different packs (such as copying an .rpk

file in file explorer without removing resources or regenerating IDs).
●​ May be caused by Circular Dependencies (see below), usually when a lot of them are

generated and they continue to generate until the game crashes.

Circular Dependency Detected

●​ You’ll usually get this as an Assert (pop up error) while loading the game. This means
somewhere there are Resource Packs linking to each other in a circular manner.

●​ This means that the game is stuck endlessly loading content, as Resource Pack 1 calls
upon the game to load Resource Pack 2, and Resource Pack 2 calls upon the game to
load Resource Pack 1. The game will never finish loading and crashes.

●​ To fix this, you can make sure to organize your packs dependencies in the Content
menu in Resource and Content editor.

●​ If you’re unsure how the circular dependency exists, you can check Content ->
Dependency Graph in Resource Editor which lets you detect indirect dependencies.
(Pack A loads Pack B which loads Pack C which loads Pack A again)

Editing Existing Packages
You can overwrite existing content easily in Age of Wonders 4. You don’t have to be afraid to
overwrite anything of the base game. When editing existing content, you automatically make a
copy of the original .rpk, keeping your base game safe.

While you can change any resource in Age of Wonders 4, this guide will show a step by step
example on how you can change the Pathfinder unit. The general principles will be the same for
any resource.

Step by Step Guide

1.​ Open the Package Manager
2.​ Create a new package.
3.​ In the Package Manager, click on Open Tools > Resource Editor.
4.​ In the top left, click on File > Open > Units > Units_Culture > Barbarian - Units
5.​ Right click Barbarian - T0 - Pathfinder - Unit and click Create Mod.
6.​ While it is selected, scroll down to the Properties line under the Abilities and Properties

header. Click the yellow cube to open the list of Properties.
7.​ Add the "+25 HP” property 4 times.
8.​ Save the package and close the Resource Editor.
9.​ The edited package gets automatically added to the Package Manager.
10.​Save the package editor and build the mod. Add the mod to your Playset, start a new

game while playing the barbarian culture. If you select your Pathfinder scout, you will see
it now has 100 extra HP!

Multiple Mods
If two mods edit the same resource, the one with the mod with the higher priority takes
precedence. It is, however, possible to edit two different resources in the same package. So
while two mods cannot both edit the Pathfinder unit, one mod can edit the Pathfinder, and a
second mod can edit the Sunderer.​
​

Editing Existing Content Libraries

We have gone over editing existing resource packages, however; you also have the ability to
edit the underlying content that these resource packages use. For instance, the meshes and
materials used in the resources are all loaded through so-called Content Libraries. These have
the .clb extension. They are located under the Content/Libraries directory within the root
directory of the game. Within your mod directory, there’s also a respective Libraries directory.
This directory is used for when a mod wants to override libraries used in the game. ContentEd is
the tool we use to open, edit and save these libraries.​
​
Editing Content is usually not necessary and only required if you want to completely override
how something in the base game looks. Content is purely visual and doesn't have any gameplay
logic tied to it.

It is also worth noting that if you accidentally save over a base game’s .clb, you would need to
either:

●​ Revert to a back-up version of the file
●​ Verify the Integrity of your game files (Steam)​

Some examples of Content are:

●​ Meshes & Models
●​ Textures
●​ Materials
●​ Animations
●​ Skeletal rigs

For this example, we’ll be replacing the image of the bootup screen. Grab a nice image from
somewhere, preferably in the .png format!

Step by Step Guide

1.​ Open the Package Manager
2.​ Create a new package (or open an existing one)
3.​ In the Package Manager, click on Tools > Content Editor
4.​ In ContentEd, click on File > Open… in the upper left hand corner
5.​ Navigate to your Age of Wonders 4 root directory (not the mod directory!)
6.​ Go into Content > Title > Libraries > Interface and open Bootup.clb
7.​ Now, Before doing anything, make sure to create a back-up of the file, or simply go to

File > Save As… and save it somewhere on your machine. (e.g. Bootup_Original.clb)
This makes it easier to revert when something goes wrong

8.​ Go to File > Save As… and navigate to your mod directory.
9.​ Duplicate the directory hierarchy as it is in the original base game, starting from the Title

directory
a.​ In this case, the base game directory for Bootup.clb is in

Content\Title\Libraries\Interface

b.​ For this example, we would then save the modified .clb in
[ModName]\Libraries\Interface, do this under the same name as the original file.
The final path would be: [ModName]\Libraries\Interface\Bootup.clb

c.​ If these directories don’t exist yet, you can create them by right clicking in the
File Save Dialog (under New > Folder in the context menu)

10.​Click on the TextureAtlasses tab in this library
11.​Select the noname Texture Atlas by left clicking on it in the list on the left
12.​In the panel on the right of the content list, right click BootupScreen2 and choose

Refresh From File
a.​ If you’ve already added the image beforehand, you can choose to Refresh From

Path, which will simply refresh the image from its original location
13.​Find your image that you want to replace the bootup screen with and click on the (now

highlighted in red) Build button. It should change back to its original color when the atlas
was rebuilt successfully

14.​Press CTRL+S to save the pack, or go to File > Save in the upper left hand corner
15.​Go back to the Package Manager and click on Refresh
16.​You should now see the .clb being listed in the Included Files panel
17.​Save within the Package Manager and build the mod. Add the mod to your Playset, set

the playset as active and boot up the game. You should now see your own image being
the splash screen of the game!

Multiple content mods
As with resource packs, if two mods modify the same Content Library, the one with the highest
priority takes precedence over the other. Whilst it’s possible to combine multiple Resource
mods, Content Libraries don’t offer this flexibility. This is also why it’s more favorable to add new
libraries and link them appropriately in existing or new resource packs.

Resource Browser
If you want to edit a specific resource, or if you want to make a new mod and want to see how
the base game does it, you can use the Resource Browser.

To access Resource Browser, load in your mod in Package manager and then in Package
Manager, go to Tools -> Resource Browser

Once the Resource Browser has finished loading, you can type in any Expression in the search
bar which will search all resources that match the filter in either their name or their resource.
You can also:

-​ Open the resource by clicking the Go To Resource option or Go To button.
-​ Find all resources that Find References, which will change the current filter to get all

resources that have a link to this resource.

Adding New Content

Adding Packages
1.​ Start a new project in the Package Manager and open the Resource Editor.
2.​ In the resource editor, click on File > New. You have now created a new pack.
3.​ On Category, click New, give your category a name and click Ok.

a.​ Categories are necessary for any resources to be put in a pack. Otherwise it
does not matter in which category resources are located. They exist purely for
organization purposes.

4.​ Save the package in the location of your mod. By default this should be in:
Documents\Paradox Interactive\Age of Wonders 4\Mods\YourModName\Packs.

5.​ In the Package Manager, click Content > Packages > Add, then find your package you
want to add and do that here.

Adding Resources
1.​ Left Click on an empty line on the left. The line will become yellow to indicate it has been

selected.
2.​ In the middle panel under the main tab, you will see Type: and Name:. Behind Type is a

dropdown menu. This lists all the resources in the editor. Select which one you want and
click on New.

a.​ When the dropdown menu with all the resources is selected you can start typing
for the resource you are looking for.

3.​ Change the resource from noname to whatever you want.
a.​ It is recommended to use the format [Content Name] - [Resource Type] so you

can find the resource easily. Example: Fireball - Tactical Unit Targeter.

Adding Content Libraries
Apart from being able to edit existing content libraries, you also have the option to add new
.clbs. This is useful to not interfere with content from the base game and gives mods more
flexibility to use their content in many different ways throughout the resource packages.

For this example we’re going to be replacing the city structures on the Strategic Map, for a
multitude of Cultures, through our Modularity system.

We’re going to need the following pieces of content:

●​ A mesh (in the .fbx file format, see FBX Notes)
●​ A texture (preferably in the .tga or .png file format)

You can of course create these yourself, however; we have also included some example files
that you can use for this process. These are provided alongside the guide online.

The relevant files are:

●​ Castle_Mesh.fbx
●​ Castle_Diffuse.png
●​ Castle_Normal.png

We’re going to be replacing the Tier I City Structure of both the Feudal and Barbarian Cultures.

Step by Step Guide

1.​ Open the Package Manager
2.​ Create a new package (or open an existing one)
3.​ In the Package Manager, click on Tools > Content Editor
4.​ To start off, immediately go to the upper left hand corner and choose File > Save
5.​ Save the file under a name of your choice, in the Libraries directory within your mod’s

folder hierarchy (e.g. Castle_Meshes.clb)
6.​ You can see some default tabs of the resources that can be imported. If you want to

enable tabs for different types of resources, you can do so under Options > Change
Features. For this example we won’t need the Models feature, so go ahead and disable
it by selecting the Models entry under Selected: and moving it to the right of the list by
clicking the >> button

7.​ You should now be in the Meshes tab. If you are not, select the tab by clicking on it
8.​ Now, click on the Import button to start importing meshes
9.​ Navigate to the Castle_Mesh.fbx file in the example files directory we have provided (or

use an .fbx of your choice!). Open the file. It’s worth noting that .dae is still supported as
a file format, but it’s preferable to use .fbx. If you run into importing errors, make sure
your mesh is both triangulated and that it has a material

10.​Switch to the Textures tab by clicking on it

11.​Again, click on the Import button to start importing textures
12.​Navigate to the Castle_Diffuse.png and Castle_Normal.png files we have provided, or

use some textures of your own. The normal is not required, but we’re leaving it here for
completeness sake.

13.​ You can choose to rename the texture files, which we will be doing in this case. You can
either select the new content and press F2 to rename it, or change the name in the input
box on the right hand side (in the panel with all the properties). In this case we’ll rename
the entries to Castle_Diffuse and Castle_Normal respectively.

14.​Select the Diffuse texture and change the Color Space property to sRGB. This is
required for proper colors on your diffuse texture. The normal map should remain in the
Linear color space.

15.​Next, switch to the Materials tab
16.​While having Default selected under the Material Type:, click on the New Material button
17.​Rename the new noname material to something like Castle_Material
18.​Copy the content by pressing CTRL+C while having the content selected
19.​Select the row below the currently selected content and paste a copy by pressing

CTRL+V.
20.​Rename this copy to Castle_Material_Red
21.​Under the Diffuse Map separator, change the Library property of the Diffuse Map to

Default { NAME_OF_YOUR_CLB }
22.​Next, select the imported Castle_Diffuse texture under the Resource property of the

Diffuse Map
23.​Do this same process for the Normal Map property, but select the Castle_Normal texture

that we’ve imported earlier.
24.​Go back to the Meshes tab and select the previously imported mesh
25.​Expand the Default Material property in the right hand side panel
26.​Under the Library property, select Default { NAME_OF_YOUR_CLB } again
27.​Change the Resource to the Castle_Material material we’ve created earlier. You should

now see the material being applied to your mesh in the viewport.
28.​Right-click the Meshes tab and choose Lock Viewport. This makes it so that the

viewport stays open as if we’re in the Meshes tab, while navigating through the other
tabs. To unlock the viewport, Right-click on the locked viewport tab and choose Unlock
Viewport.

29.​Rename the imported mesh (using the same rename principles as mentioned above) to
Castle_Feudal.

30.​Copy the content by pressing CTRL+C while having the content selected
31.​Select the row below the currently selected content and paste a copy by pressing

CTRL+V.
32.​Rename this piece of content to Castle_Barbarian
33.​Change the material of this copied mesh to the Castle_Material_Red material we’ve

created earlier
34.​While keeping the Castle_Barbarian content selected, switch back to the Materials tab
35.​Select the Castle_Material_Red content
36.​Under the Colorize separator, click the white square next to the Colorize property

37.​In the dialog that appears, click on the white square again to open a color picker
38.​Pick a nice color for your material. You should be able to see the material update in

realtime as we have locked the viewport of the mesh with the material that we’re editing.
39.​Save the content library by either pressing CTRL+S or going to the upper left hand

corner and choosing File > Save. There’s an entry in the log under the viewport if saving
was successful.

We have now successfully created a Content Library that we can use throughout our Resource
Packages! Of course, this content will not appear in the game yet until we have linked it up
somewhere; so let’s do that now.

Step by Step Guide

1.​ In the Package Manager, go to Tools > Resource Editor
2.​ In the upper left hand corner, go to File > Open
3.​ Within the root directory of the base game, navigate to

Content\Title\Packs\Strategic\Architecture and open Architecture_Feudal_Strategic.rpk
and Architecture_Barbarian_Strategic.rpk by multi-selecting them (CTRL + click)

4.​ In the opened pack, in the upper bar, go to Content > Libraries
5.​ Click the Add button and find the Castle_Meshes.clb content library we’ve created

earlier (in your Mod’s Libraries directory). Open it.
6.​ Click OK, the resource pack should now refresh
7.​ Now, change the Category: to Modularity: City
8.​ Select the Component: City Core T1 resource
9.​ Right-click the resource and choose Create Mod
10.​Select all meshes under the Mesh tab in the right hand side panel and delete them by

pressing Del on your keyboard (or Right-clicking and choosing Delete)
11.​Right-click the 0th entry in this same list and choose New (or press CTRL+N)
12.​Next, expand the Mesh property on the right and find the mesh in our created content

library (Library = Default { CASTLE_MESHES }, Resource = Castle_Feudal)
13.​Save the pack (CTRL+S)
14.​Repeat steps 4 to 13 for the Architecture_Barbarian_Strategic resource pack

It’s time to test our mod! Boot up the game with the proper Playset of your mod. Create a new
faction using the Feudal culture and start a new session. Your city should be replaced with the
castle mesh. If you start a game using the Barbarian culture, you will ideally see the mesh with
the different material that we’ve created earlier.

FBX Notes
We use the .fbx file format (as well as .dae, but it has been deprecated during development) to
import meshes into our Content Libraries. As FBX can have problems with parity between
different applications that interpret it, we wanted to elaborate a bit on how you can make sure
that your exported meshes are correctly imported into our engine.​

​
Some things worth mentioning:

●​ We have a right-handed, DirectX-based, coordinate system
●​ In our engine, the axes are defined as follows:

○​ +Y-axis: Up axis
○​ +Z-axis: Forward axis
○​ +X-axis: Right axis

●​ We support the following from the FBX specification:
○​ Meshes
○​ Material groups
○​ Skeletons/rigs
○​ Skinning (with a maximum of 4 weight influences)
○​ Animations
○​ Vertex attributes (e.g. color, custom vertex normals, 2 UV sets – of which the

2nd is for overlays, etc.)
○​ Pivot points

●​ Some of the things that we do not support:
○​ Lights
○​ Cameras
○​ IKs (should be baked into the animation keyframes)
○​ Animation Curves (curves should be baked into keyframes)
○​ Transformations (these should be applied/baked into meshes or animation)
○​ Materials/shaders (we set up materials from within our engine)
○​ Quads (Triangulate your meshes; the importer should do this automatically)
○​ Quaternion integration of animation keyframes (these should be resampled

as Euler)

Blender has been used to test out modding compatibility, but anything that exports to the .fbx file
format can be used. During development, Autodesk Maya was used, which has some
implications in regards to the orientation of bones in a skeleton when compared to Blender.

Preparing For Export - Regular Meshes
To export a mesh from Blender there are some things to keep in mind:

●​ Make sure all transformations are applied
●​ Make sure your pivots are set correctly
●​ Align your meshes as follows:

○​ - Y-axis = Z-axis (forward) in our engine
○​ +Z-axis = Y-axis (up) in our engine
○​ +X-axis = X-axis (right) in our engine

●​ A material is required, as we use them to split up meshes on a per-material basis
●​ Make sure your units are set to meters

When you are ready to export your mesh, go to File > Export > FBX (.fbx). You can now save
the file somewhere, but before you do; make sure the settings are as follows (other settings
might work – especially if you follow your own orientation rules, but these settings have been
used for testing given the alignment mentioned above). These settings were available in
Blender 3.5, but they are also applicable for earlier versions.

The Bake Animation section should not be relevant for non-animated meshes. Furthermore,
what is included in the export is up to yourself; do note we only support Meshes and Armatures
for export. Vertex Colors can also be changed to be linear if required.

Importing - Rigs
In our example files we have included some importable .fbx files for the different rigs that we use
in the game. This means you won’t have to completely re-create the skeletal hierarchy in your
3D editing software if you were to export skinned bones.

It’s important that the hierarchy is exactly the same in the .fbx file as that it is expected to be in
the game. Our mesh to bone mapping is index-based, so bones need to be in the same place
in the hierarchy for animation skinning to work. Furthermore, we do some filtering of our rigs
through how their names are written out in the .fbx file (e.g. the _F_ and _K_ prefixes). It is
possible to create your rigs from scratch, but it is not recommended as this means you would

also have to go through the process of setting up our animation systems from scratch. The idea
here is to re-use existing rigs and animations for when you only want to swap out some meshes
in your mod. Again, it is possible to create a new rig, animations and meshes that are skinned to
it, but we currently don’t have any support documentation for this.

To import a rig, go to File > Import > FBX (.fbx) and navigate to the appropriate file of the rig
that you want to import. Use the following settings:

The most important part here is that Automatic Bone Orientation & Ignore Leaf Bones remains
unchecked under the Armature section. This makes sure that the bone orientations stay as-is.

Lastly, it’s worth mentioning that these rigs are not very useful to use for animation in Blender.
The bone orientations of our rigs don’t have a leading axis – we purely look at the orientation of
a bone in the bind pose and deduce the bone length from child to parent. In Blender, the leading
axis of a bone is always the local Y-axis. This means that the visualization in the viewport of
Blender might look a bit misleading, but this is unfortunately a limitation we have to deal with.
When using Autodesk Maya, the bones will import correctly as-is. ​
As we’re only storing skinning information about bones, this should be workable enough; but for
animation it’s practically impossible.​

​

Example of the bone orientations of Humanoid_Rig when imported correctly

Example of the bone orientations of Humanoid_Rig when imported incorrectly

Preparing For Export - Skinned Meshes
After skinning meshes to bones, you can now export these meshes and the respective armature
that goes along with it.

The export settings are exactly the same as for regular meshes; however, the armature settings
should remain like this:

Be sure you have included both Armature and Mesh in the Include section!

FBX - Validation

If you want to validate whether your skinned mesh was exported correctly, try and follow the
Adding Leader Customization Items section using your new .fbx. If you want to validate a
regular mesh, try out the Adding Content Libraries section!

Modularity System Overview
Throughout the game, we use the so-called Modularity system. For example, the guide on
Adding Content Libraries shows you how you can set up a City structure for both the
Barbarian and Feudal culture, while sharing the same mesh content, but using different
materials for each. Be sure to check out that guide as well!

Modularity - Design
The idea behind the Modularity system is that we can re-use our content and combine them in
different ways. Flexibility is key here. In a way the system can do very generalized processing of
visuals. There are no hard dependencies on gameplay logic. For instance, all of the humanoid
units in our game share the same rig, but they’re scaled differently through so-called Rig
Modifiers. These modifiers are applied in the Modularity system based on the unit’s Providers.
However, these Providers only tell us what a unit is supposed to look like, they’re not strictly
linked to the unit. You could create the unit visually while not having any information about the
Unit’s gameplay data. We keep track of all the visuals we want to present in a Modularity Object.

Some examples of these providers are – but are not limited to:

●​ Skin
●​ Culture
●​ Unit Type
●​ Gender (where applicable)
●​ Customization

Modularity - The Modularity Object
To bring the visuals together, we have a generalized object that a lot of objects (not all) in our
game use. The properties that are read out from gameplay logic are variable based on what
type of object we’re dealing with. For instance, we do quite a bit of Modularity logic in Units, but
way less so in Structures. To keep track of what we want to show, we store so-called Providers
in the Modularity Object. These Providers are linked to a respective Modularity Object in the
resource packs.

Modularity - Providers
These are resources of the Modularity: Provider resource type. Providers are the “modular
pieces” to our system. For instance; a Feudal Toad Pikeman unit’s Providers could look like this:

●​ Culture: Feudal
●​ Unit Type: Pikeman
●​ Skin: Toad
●​ Essence: Stout
●​ Gender: Male

Providers inject so-called Tags into the Modularity Object. These can be used later by
Components to filter certain parts of the visuals. Here is an example of the Skin: Orc Provider:

As you can see, whenever this Provider is added; the “Orc”, “HasHair” and “HasBeard” Tags are
included into the Modularity Object. In this example, we for instance make sure that during
customization, hair and beard sliders can be used to customize the leader. Of course, this is just
an example; we use Tags in a lot of different ways. It boils down to giving us a generalized way
to conditionally enable and disable content.

Modularity - Entity Types
These types (Modularity: Entity Type in resource packs) are used to distinguish between what
sort of object we’re targeting with our Providers. The Culture: Feudal provider is not only used
in Units, but also in Cities. If there are Components that are unlocked through Culture: Feudal,
we only want to allow these if they’re of the same Entity Type as the original object (e.g. We
don’t want to include a city’s particle effects that are specifically unlocked through the Culture:
Feudal provider if we’re dealing with a Unit object). Quite often we use the Category Type:
Shared as Entity Type. This ignores this type of filtering functionality.​
​
How this works is that all Providers for an object are gathered, after which the first Entity Type
we encounter becomes the main Entity Type. If another Provider unlocks components of a type
that is not the same as the main type (and not shared), they will be disabled. The order in
which Providers are added determines their priority. If for instance you add two Providers that
have a different Entity Type, the Entity Type of only the first Provider is used, filtering out the
other.

As you can see in the example screenshot on the previous page, there is an Entity Type
property within Providers. This is only here to determine the main type as mentioned above,
further filtering happens in the Components.

Modularity - Components
These are the types of resources (Modularity: Component in resource packs) that add the final
visuals/visual dependencies to the Modularity-based object.

The different types of visuals that can be included in a component are the following:

●​ Mesh
●​ Particle effects
●​ Animation data (rig, rig modifier, animation layer)
●​ Icon data (for rendering portrait icons)
●​ Decals
●​ Sound effects
●​ Colliders
●​ General variables (mostly unused!)
●​ Attachment nodes (for particles on weapons, for e.g. enchantments)

Components contain a Component Category (Modularity: Component Category in resource
packs), which are used to determine what Entity Type the component applies to and by which
Providers the Component Category is unlocked. Component Categories are then used to
determine which component takes precedence over which. If two Components are unlocked,
but they share the same category; either one or the other is picked randomly. This can be used
to give small variances to the Modularity object you’re building. If the Entity Type of the category
doesn’t match the main type of the currently processed object, the components are disabled.

Components - Examples
Here is an example of a component for a Feudal Helmet
(Content\Title\Packs\Unit_Modularity\Culture_Feudal_Modularity.rpk > Component: Helmet -
Feudal Basic) customization option:​
​

As you can see, the helmet has its own Provider. If we add Helmet Type: Feudal Basic to our
Modularity object, we’d get the meshes under “Mesh” added to our visuals. Again, this only
happens if the Entity Type of the Category: Helmet matches the original main type of our
object. (In this case, Category Type: Unit) If we add this Provider to a City, the helmet will not
appear.

Components - Tag Filter
A Tag Filter can be specified to make sure that the Component only shows up under specific
circumstances. The Tag Filter of this specific resource looks like this:​

A similar resource (Component: Helmet - Feudal Basic no nose and sides in the same pack)
then has exactly the same set up, except for the Tag Filter and Meshes it provides.​

This means all of our Feudal Leaders – that are either a Moleman, Rat, Tigran or Toad, will use
the “no nose and sides” version. Female Dwarves, Humans, Elves, Orcs and Halflings will use
the original helmet. However, both of these can simply be added through the Helmet Type:
Feudal Basic Provider. The system will automatically resolve the filters.

Components - Component Categories
Taking a look into the Category: Unit Component Category reveals the following:​

As you can see, it is only applicable for the Category Type: Unit Entity Type. Furthermore,
Unlocked By Providers determines which Providers unlock this respective category. Not only
can we include Providers; Blocked By Providers makes sure that even though a specific
Provider has the correct Entity Type linked, it is still filtered out. (In this case, we don’t want the
helmet to display when on a boat – we don’t show any units on boats at the time of writing this
guide). Lastly, you can push in more tags into the Component Category if need be. In this case,
we add the extra Helmet tag.

Modularity - Scenes
There’s a multitude of methods to determine how your Components interact with each other, but
Scenes are probably the easiest way to check if everything is working correctly in your
Modularity setup.

Scenes are specifically used in-game for presenting screens with multiple Modularity Objects.
These objects receive their Providers from code or from resources. We won’t be going into too
much detail on how to use these Scenes for their in-game purpose, but they’re also a very
powerful debug tool.

For this example we’ll be opening the Content\Title\Packs\Frontend_Scene.rpk pack. Select the
Scene: Title (Feudal) resource, you should see something like this:​

​
You can navigate the Scene with the default camera controls. If you want to Move, Scale, or
Rotate an Entity you can do so by selecting it in the Entity Outliner or by simply clicking the
orange circle at the Entity’s pivot point. A Gizmo will appear. ​
​
With the Gizmo open you can cycle through the different transformation modes with the
following keys:​

●​ T = Translation, offset the entity positionally
●​ E = Scale, change the size of the Entity
●​ R = Rotate, change the orientation of the Entity

​
Furthermore, you can press B to view all bones of each Entity in the view (not very performant!).
There’s of course a lot to do here, but what we’re mostly interested in is viewing the Modularity
objects that we’ve created or are yet to create. Please feel free to fiddle around with the tool!

Here’s a step-by-step guide on how you can test your Providers:

1.​ Open the Entity Definitions panel by clicking on the yellow/orange square to the
right-hand side of it.

2.​ Select the %Leader Entity Definition and open its Modularity Providers​

​
​

3.​ Search for Helmet Type: Feudal Basic and add it to the list​

4.​ As you can see (if you click OK twice to exit this interface), we still do not get a helmet.

That is because the helmet is for the Feudal culture, not for Barbarians. So our Tag Filter
doesn’t pass.

5.​ Go to the Modularity Providers of %Leader again, remove the Culture: Barbarian
provider and add the Culture: Feudal provider instead. You should now see the armor
and helmet change!​

You can of course create a Scene from scratch, just be sure to link the correct resource packs
containing your Providers!

Modularity - Linking Providers
If a system supports our Modularity system, you usually have the ability to link providers to a
respective resource in the resource packs. In the Scenes example above we linked different
Providers to the preview entities of the Scene. While we will not see these changes in the game,
this is exactly how you would also change the Providers of a different resource. However, there
are also circumstances in which Providers are gathered from settings resources and then
combined into one Modularity Object. This is the case for Units, for instance.​
​
A big difference between how Modularity resources and regular resource links work, is that
Modularity resources are not technically linked together. Providers know what Entity Types they
unlock, they don’t know about their Components. Instead, Components know what Providers
unlock them. In the end, we only link Providers; you cannot link Components. It is a bit difficult
sometimes to keep an overview of this, but the Resource Browser can be a powerful tool to find
where Providers for Components are defined.

​
Adding Text
If you want to add new things like units or abilities into the game, you will also need to add new
text into the game so that those units and spells have distinct names and descriptions. For
handing text in Highlander we recommend the usage of POEdit.

Create a POT Template file

1.​ Create an empty text file such as Notepad.
2.​ Add the following lines:

a.​ msgid "[IDNAME]"
msgstr "”

b.​ The first line is the text ID that is used to identify which text should be used.​
The second line is what the text will be that is used when you link the TextID.

c.​ If you want more than 1 string, simply add another 2 lines “msgid “[IDNAME]””
and “msgstr “”” for each extra string.

3.​ Save the file as [MODNAME].pot
a.​ You can also change the extension to .pot after saving it as a text file.

This file is the template that you will use whenever you need to add new text IDs

Tip: Triumph usually formats string IDs as follows: [rpkname@resourcename@element], which
can look something like:
“UNITPROPERTIES@POISONED@DESCRIPTION”
This allows you to quickly identify where the string should end up and what its purpose is.

Create PO Project

1.​ Launch POEdit
2.​ Click on Create new… (Create new translation from POT template)
3.​ Select the Template made in the previous step
4.​ Save the po file in the Languages folder of your mod as [MODNAME].po
5.​ Start or refresh your package manager. You will see three files show up: a .po file, a .mo

file and a .pot file.
6.​ Make sure the .mo file is named [MODNAME].mo.

This file is the actual localisation project that you will use after adding text IDs to add new text
entries.

Adding ID’s

1.​ Right click the .pot file and open it with a text editing program like Notepad.
2.​ Add the text IDs with empty message strings like you did before:

a.​ msgid "MOD@PACK@RESOURCE@NAME"​
msgstr "”

3.​ Save and exit.
4.​ Open the .po file using POEdit.
5.​ Click on Translation > Update from POT file and double click the .pot file.
6.​ The new text IDs are now added.

Adding Text to IDs

1.​ Open the .po file using POEdit.
2.​ Click on one of the text IDs you want to add text to.
3.​ At the bottom is a text box for translations. Insert your text here.

Adding Text IDs to Resources

1.​ Whenever a resource needs text, it will have the display { Not Set }.
2.​ Click on the yellow cube to open a window called Localized String Dialog.
3.​ In the empty text bar at the bottom, add the text ID, for example:

MOD@PACK@RESOURCE@NAME.

Adding the MO to your Mod
Lastly, to link your text to the project, do the following:

1.​ In the Resource Editor, go to Content > Languages > Add and add the .mo file.
2.​ Do this for each .rpk file in your mod that you want to link your text to.

Adding a New Tome (Example Mod)

For this guide, we will be making an example Tome that you can download called the Tome of
Penguins and is available on Steam Workshop and online alongside this guide.

All these steps will assume you will be making a Tome of Penguins, but the specific names or
resources used can be anything you want.
Make sure to read up on Adding Text.

Tome Setup
1.​ In the package manager, open the resource editor and make a new package, save it as

Tome_Penguins.
2.​ Add the package to the Package Manager via Content > Resource Packs > Add.
3.​ Go to Content > Resource Packs > Add, and add Core_Research found in

Title\Packs\Research.
a.​ This contains all the information all Tome packs need to know about such as

research cost and icons.
4.​ Add a new category and name it Tome of Penguins - Definition.
5.​ Add the resource AoW Skill Grid: Group and name it Tome of Penguins
6.​ Add the resource AoW Skill Grid Group: List Data Settings and call it Tome of

Penguins - Data Settings

a.​ Add the Tome of Penguins to the Skill Group: Global and Frontend Skill
Groups. This is what actually makes the Tome of Penguin show up as a possible
Tome to choose during gameplay and during faction creation.

7.​ Add the resource Icon (Interface) and name it Tome of Penguins - Icon.
a.​ Click on Image > Resource > Resource and select Tomes.
b.​ Click on Sub Resource and select Tomebook_Chaos_Pandemonium.

8.​ Add the resource Player property and name it Tome of Penguins - Player Property. This
can be used as an identifier to unlock certain content associated with the Tome.

9.​ There are a bunch of settings in this resource that need to be filled in in the Tome of
Penguins.

a.​ Source Name: Tome of Penguins
b.​ Gameplay Description: The forbidden Tome of dire Knowledge, containing the

foulest spells and the most horrid creatures.
c.​ Icon Link: Tome of Penguins - Icon
d.​ Icon Opened Link: Tome - Chaos: Opened
e.​ Glyph Image A: Tome - Chaos: Glyph A
f.​ Glyph Image B: Tome - Chaos: Glyph B
g.​ Initial Player Properties: Link to Tome of Penguins - Player Property.
h.​ Tier: Tome - Tier I
i.​ Right click Hero Affinities > New > Chaos - Affinity Definition, put the affinity

amount to 2. (Despite the name, this is the affinity given to the Empire, not to
Heroes)

You can test the mod now by building and enabling the mod. In faction creation, the Tome of
Penguins should show up as one of your starting Tomes.

Adding Research Skills

Research Skills are the pieces of content you can unlock via Arcane Research using
Knowledge. This includes research from Tomes, Cultures and general research. All work using
the same setup.

1.​ In the Tome_Penguins.rpk, add a new Category and name it Tome of Penguins - Skills.
2.​ Add the resource AoW Skill Grid: Skill and name it Skill 1 - Skill.

a.​ Screen Name: Name used for the skill. This must always be filled in or it will
cause errors!

b.​ Screen Description: The description used for the skill.
c.​ Screen Type Link: This is displayed when looking at the skill to inform the player

what type of skill it is, it has no effect on gameplay and can be left empty.
d.​ Tier: This determines the Knowledge cost of the skill.
e.​ Group Link: This links the skill to your Tome. So link this to Tome of Penguins.
f.​ Requisite List: These are hidden identifiers used for logic such as discounts.
g.​ Can be Starting Skill: Choose a single skill in your Tome and set this to True.

When this Tome is chosen as a starting Tome. That skill will already be unlocked.
h.​ AI Priority Resource Link: Used for AI to determine how valuable this skill is. By

default, set this to Research AI Priority - Medium. The skill won’t work if this is
empty.

3.​ Add the resource Icon (Interface) and name it Skill 1 - Icon.
a.​ Choose any icon.
b.​ In Skill 1 - Skill, go to Large Icon Link and link this icon.

4.​ Add the resource AoW Skill Grid: Sub-skill and name it Skill 1 - Sub-Skill.
a.​ Type: This determines how the UI displays this skill. This needs to match up or

the skill won’t work.

i.​ Operations are used for all Spells, including Unit Enchantments and
Transformations. And for Siege Projects.

ii.​ Colony Upgrade is used for City Structures.
iii.​ Unit Unlock is used for Units.
iv.​ Global Bonus is used for most other things like passive bonuses.

b.​ In Skill 1 - Skill, go to Sub Skills and link this sub skill.
c.​ Multiple Sub-skills can be given to unlock multiple things with a single skill.

5.​ Add the resource Player Property and name it Skill 1 - Player Property.
a.​ In Skill 1 - Sub-Skill, go to Player Properties and link this Player Property.
b.​ This property is the identifier for a player that will actually unlock content.

Everything before this is just to give this player property to the player via
research.

Now if you test the mod, there will be a single skill displayed in the Tome. You can research it
and get the player property Skill 1 - Player Property. This is an invisible property and currently
unlocks nothing.

A tome should consist of 4 to 6 skills. Every 4 skills a player unlocks a new tome. So giving
fewer than 4 skills will result in a possible dead end of your research. Having more than 6 skills
will result in UI and balance issues.

6.​ Repeat this process 5 times to get a total of 6 skills for this tome.
a.​ Tip: You can copy paste the setup of 4 resources a few times, then rename and

relink everything. So Skill 2 - Player Property will be given by the Skill 2 -
Sub-skill which is given by the Skill 2 - Skill.

b.​ Tip 2: You can search and replace resource names using the CTRL + SHIFT + F
shortcut. It will only apply to all the resources currently selected (those that turn
yellow).

c.​ For the rest of this example tome, the skills will be as follows:​
Skill 1: Strategic Spell - Summon Dire Penguin​
Skill 2: Tactical Spell - Flock of Fury​
Skill 3: Unit Enchantment - Dedicated to Evil​
Skill 4: Transformation - Penguinification​
Skill 5: City Structure - Nest of Evil​
Skill 6: Unit - Dire Emperor Penguin

Adding a Strategic Spell

1.​ In the Tome_Penguins.rpk, add a new Category and name it Tome of Penguins -

Strategic Spells.
2.​ Add the resource AoW Special Operation: Instant and name it Summon Dire Penguin -

Strategic Spell.
a.​ Screen Name, Screen Description, Screen Type and Large Icon Link: Can

use the text and icons as the skill.
b.​ FX Sequencer: The PFX that play when this spell is cast. Select Casting SC

Chaos.
c.​ Event > Targeters: Links to targeters used for this spell. All spells will need at

least 1 targeter.
d.​ Required Player Properties: By default, all spells are available to everyone. So

make sure to add a property here that players need to unlock. Link Skill 1 -
Player Property.

e.​ Requisites: Identifiers used for effects such as discounts. Add Strategic Spell,
Strategic: Summon Spell and Chaos Affinity Content.

f.​ AI Priority Resource Link: Set to Strategic Operation AI Priority - Medium.
g.​ Cost Data Link: This defines the casting point and mana cost to cast this spell.

Set this to Strategic Summon Spell Tier 1 (60).
3.​ Add the resource Magic - Strategic Position Targeter: Single and name it Summon

Dire Penguin - Position Targeter: Single. Targeters determine what hexes or units are
affected by a spell.

a.​ Block Enemy Units: Set to True.
b.​ Movement Checker Unit Link: Set to Unit - Land Movement Template.
c.​ In Summon Dire Penguin - Strategic Spell, you can now link this resource to

the Events > Targeters.
4.​ Add the resource Magic - Strategic Position Effect: Summon Unit and name it

Summon Dire Penguin - Summon Unit.
a.​ In Summon Dire Penguin - Position Targeter: Single, link this resource to the

Effects.
5.​ Add the Resource AoW Unit Category and name it Summon Dire Penguin - Unit

Category.
a.​ CategoryName: Add the following text: SUMMON_PENGUIN_CAT
b.​ Sets: Add the following text: PENGUIN.
c.​ In Summon Dire Penguin - Summon Unit, link this resource to the Unit

Category Link.
6.​ Make sure the research skill has the Research: Strategic Summon and Research

Affinity: Chaos requisites and the sub-skills Type setting is set to Operation.

You can test the mod. Choose the Tome of Penguins in faction creation, prime the spell and cast
it.

Adding a Tactical Spell

1.​ In the Tome_Penguins.rpk, add a new Category and name it Tome of Penguins -

Tactical Spells.
2.​ Add the resource AoW Special Operation: Combat and name it Flock of Fury - Tactical

Spell. A lot of the setup for this will be similar to adding a Strategic Spell.
a.​ Screen Name, Screen Description, Screen Type and Large Icon Link: You

can use the same text and icons as the skill.
b.​ FX Sequencer: The PFX that plays when this spell is cast. Select Casting TC

Chaos.
c.​ Event > Targeters: Links to targeters used for this spell. All spells will need at

least 1 targeter.
d.​ Required Player Properties: By default, all spells are available to everyone. So

make sure to add a property here that players need to unlock. Link Skill 2 -
Player Property.

e.​ Requisites: Identifiers used for effects such as discounts. Link Tactical: Debuff
Spell, Tactical: Direct Damage Spell and Chaos Affinity Content.

f.​ AI Priority Resource Link: Set to Strategic Operation AI Priority - Medium.
g.​ Cost Data Link: This defines the casting point and mana cost to cast this spell.

Set this to Tactical Operation Tier 1 (10/10).
3.​ Add the resource Magic - Tactical Unit Targeter: Single and name it Flock of Fury -

Unit Targeter: Single.
a.​ Effects: Add Blinded - Effect Property and Bleeding - Effect Property .
b.​ Friendly Fire Type: Set to Enemies Only.
c.​ In Flock of Fury - Tactical Spell, you can now link this resource to the Events >

Targeters.
4.​ Add the resource Magic - Tactical Unit Effect: Damage and name it Flock of Fury -

Damage.
a.​ Damage > Physical set the damage value from 0 to 15.
b.​ In Flock of Fury - Unit Targeter: Single link this resource to the Effects.

You can test the mod. Choose the Tome of Penguins in faction creation, research Flock of Fury,
go into manual combat and cast the spell on an enemy.

Adding a Unit Enchantment

1.​ In the Tome_Penguins.rpk, add a new Category and name it Tome of Penguins - Unit

Enchantments.
2.​ Add the resource Aow Special Operation: Sustained - No Map Marking and name it

Dedicated to Evil - Unit Enchantment. Sustained Operations are spells that have a
continuous effect that can be canceled by the player.

a.​ Screen Name, Screen Description, Screen Type and Large Icon Link: You
can use the same text and icons as the skill.

b.​ Required Player Property: By default, all spells are available to everyone. So
make sure to add a property here that players need to unlock. Link Skill 3 -
Player Property.

c.​ Requisites: Identifiers used for effects such as discounts. Link Strategic Spell,
Strategic: Unit Enchantment, Chaos Affinity Content.

d.​ AI Priority Resource Link: Set to Strategic Operation AI Priority - Medium.
e.​ Cost Data Link: This defines the casting point and mana cost to cast this spell.

Set this to Unit Enchantment Tier 1 (70).
f.​ Duration: Determines how long the sustained spell is active for. Set this to -1 to

make it last until canceled by the player.
g.​ Is Unit Enchantment: Set this to True.

3.​ Add the resource Magic - Player Targeter: Self and name it Dedicated to Evil - Player
Targeter: Self. This allows a spell to target the player that cast it.

a.​ In Dedicated to Evil - Unit Enchantment, you can now link this resource to the
Events > Targeters.

4.​ Add the resource Magic - Player Effect: Property and name it Dedicated to Evil -
Player Effect: Property. This allows temporary player properties to be added to a player.

a.​ In Dedicated to Evil - Player Targeter: Self, you can now link this resource to
the Effects.

5.​ Add the resource Magic - Player Property: Unit Upgrade and name it Dedicated to Evil
- Player Property: Unit Upgrade. This causes all the units under the player to be affected
by the linked Unit Upgrade.

a.​ In Dedicated to Evil - Player Effect: Property, you can now link this resource to
the Player Properties.

6.​ Add the resource AoW Unit Upgrade and name it Dedicated to Evil - Unit Upgrade. This
allows us to give properties to units with specific requisites. And it allows us to charge an
upkeep for each affected unit.

a.​ Requisite Filter > Required Requisites: Link to Shock Unit - Requisite and
Fighter Unit - Requisite. If this is empty it will be applied to all owned units. You
can add any requisite you want here.

b.​ Upkeep Link: Link to Unit Enchantment Upkeep - Cheap (2 per unit).
c.​ In Dedicated to Evil - Player Property: Unit Upgrade, you can now link this

resource to the Player Properties.
7.​ Add the resource AoW Unit Property: Group and name it Dedicated to Evil - Property

Group. Property groups are used to store multiple properties. The advantage of using
this as opposed to linking separate properties in the Unit Upgrade is that you can more
easily decide what properties are displayed, what text is used and it is generally easier to
change later.

a.​ Screen Name: Use the same as the spell.
b.​ Screen Description: You can optionally write a different text to differentiate

between the spell and the property it gives. Or use the same one as the spell.
c.​ Large Icon Link: Use the same as the spell.
d.​ List: These are the actual properties the unit will get. Add Vicious Killer -

Property and Base Melee Strike - +2 Physical Damage Unit Property.
e.​ Display Children: Set this to False. To avoid duplicate mentions of the same

property. We do not want Vicious Killer to appear separately in the unit panel.
f.​ In Dedicated to Evil - Unit Upgrade, you can now link this resource to the

Properties.

You can now test the mod. Choose the Tome of Penguins in faction creation, research
Dedicated to Evil, make sure you have a shock or fighter unit (summon some Dire Penguins)
and cast the Unit Enchantment.

Adding a Transformation

1.​ In the Tome_Penguins.rpk, add a new Category and name it Tome of Penguins -

Transformation.
2.​ Add the resource Aow Special Operation: Racial Transformation and name it

Penguinification - Racial Transformation. This is the operation that allows you to apply
race transformations. It works very similar to strategic spells.

a.​ Screen Name, Screen Description, Screen Type and Large Icon Link: You
can use the same text and icons as the skill.

b.​ Required Player Property: By default, all race transformations are available to
everyone. Make sure to add a property here that players need to unlock. Link
Skill 4 - Player Property.

c.​ Requisites: Identifiers used for effects such as discounts. Link Strategic Spell,
Strategic: Transformation, Chaos Affinity Content.

d.​ AI Priority Resource Link: Set to Strategic Operation AI Priority - Medium.
e.​ Cost Data Link: This defines the casting point and mana cost to cast this spell.

Set this to Race Transformation Tier 1 (150).
f.​ Transformation Tags: If you want these Transformation to be used by node

defenders, open the Tag Set Editor, right click and add MinorTransformation
and ChaosTransformation.

g.​ Combat Value Bonus: Modifier on a unit's strength rating. This is used for AI
and humans to evaluate the strength of a threat. Set this to 0.2.

3.​ Add the resource AoW Unit Requisite and name it Penguinification - Unit Requisite.
a.​ Screen Name: Use the same name as the skill.
b.​ In Penguinification - Racial Transformation, you can now link this resource to

the Requisites to Give.
4.​ Add the resource AoW Unit Property: Group and name it Penguinification - Property

Group.
a.​ Screen Name, Screen Description, Screen Type and Large Icon Link: You

can use the same text and icons as the skill.
b.​ List: The list of properties the units will get. Add Intimidating Aura - Auto Spell.
c.​ Display Children: Set to false. The Transformation itself will already be

displayed.
d.​ In Penguinification - Unit Requisite, you can now link this resource to the

Property Link.
5.​ Add the resource AoW Unit Property: Stat Bonus and name it Penguinification - Stat

Bonus.
a.​ Screen Name, Screen Description, Screen Type and Large Icon Link: You

can use the same text and icons as the skill.
b.​ Damage Reduction: You can set defensive bonuses for all damage types. For

now go to Frost and change the value to 3.
c.​ In Penguinification - Property Group, you can now link this resource to the

List.
6.​ You can add visually changes using Modularity Providers. Check out Modularity for more

information.

You can now test the mod. Choose the Tome of Penguins in faction creation, research
Penguinification, and cast the transformation.

Adding a City Structure

1.​ In the Tome_Penguins.rpk, add a new Category and name it Tome of Penguins -

Structures.
2.​ Add the resource Structure Upgrade: Standard and name it Nest of Evil - Structure

Upgrade. This is the city structure itself.
a.​ Screen Name, Screen Description, Screen Type and Large Icon Link: You

can use the same text and icons as the skill.
b.​ Cost Data Link: The defines the gold and production cost to build the structure in

the city. Set this to Cost Tier 1.
c.​ AI Priority Resource Link: Set to Strategic Operation AI Priority - Medium.

3.​ Add the resource Colony Property: Income and name it Nest of Evil - Income.
a.​ Right-Click on Income Flat and select Gold.
b.​ Do the same for Mana.
c.​ Set the values for both to 10.
d.​ Multiply by Alignment: Set this to True. It will open some new options.
e.​ Allow Negative Multiplier: Set this to false.
f.​ Alignment Type: Set this to Warmonger LVL 1. This is a link to the alignment

resources. It does not matter which Warmonger level you pick.
g.​ In Nest of Evil - Structure Upgrade, you can now link this resource to the

Colony Properties.
4.​ Add the resource Property: Unlock Settings and name it Nest of Evil - Unlock Settings.

a.​ Property: Link to the Skill 5 - Player Property. This now means that when a
player gains that player property, all other resources linked under Unlocks will
also be given to that player.

b.​ Structure Upgrades: Add the Nest of Evil - Structure Upgrade.

You can now test the mod. Choose the Tome of Penguins in faction creation, research the Nest
of Evil, and construct it in your city. You can get evil alignment with the cheat DEMONEN.

Unlocking a Unit

You can have a look at the example mod to see how the unit is set up. Or otherwise follow the
guides for creating new units.

1.​ In the Tome_Penguins.rpk, add a new Category and name it Tome of Penguins -
Structures.

2.​ Check out the guide Creating a New Unit to see how you make a new unit. In the
example mod, the added unit is a Dire Emperor Penguin. Which is a Tier 2 Shock unit
with mostly the same setup as the normal Dire Penguin.​
(Don’t forget you can always copy-paste resources between packs.)

3.​ Check out the guide Making a unit recruitable to see how you can make the Dire
Emperor Penguin available for recruitment.

Adding a Special Province Improvement

Special Province Improvements function very similar to City Structures.

1.​ In the Tome_Penguins.rpk, add a new Category and name it Tome of Penguins -
Province Improvements.

2.​ Add the resource Structure Upgrade: Standard and name it Penguin Statue - Special
Province Improvement.

a.​ Screen Name, Screen Description: Make some new text IDs and attach them
here.

b.​ Requirement Description: Link to this text ID
CITYUPGRADES_STRATEGIC@PROVINCE_IMPROVEMENT@REQUIREME
NT

c.​ Icon Link: Add a new icon and link it to the CityUpgrades_LeaderStatue.
d.​ Modularity Provider: This is used for the visualization of the province

improvement on the world map. Link to Structure Improvement: Leader Statue.
e.​ Cost Data Link: The defines the gold and production cost to build the structure in

the city. Set this to Cost Tier 2.
f.​ Structure Properties: Add the resource Override: Improvement_Conduit. This

overrides the tactical combat map that will be used when fighting on this
structure.

g.​ Sector Properties: Add the resource Conduit - Sector ID. This will be used for
adjacency bonuses.

h.​ Must have Structure Properties: Link to Town Hall Tier 2 - Base City Level -
ID. This ensures that the Special Province Improvement is unlocked by a Tier 2
Town Hall like all the others.

i.​ AI Priority Resource Link: This determines the value the AI sees for this
structure. Set to Strategic Operation AI Priority - Medium.

j.​ Sector Improvement: This determines whether it is a structure built in the city or
a Special Province Improvement. Set this to true.

k.​ Requisites: This is used as an identifier for other effects such as scaling income
per X. Add the requisites Conduit - Requisite and Special Province
Improvement - Sector Requisite ID.

3.​ Add the resource Sector Property and call it Penguin Statue - Sector ID. This is just
used as an identifier.

a.​ In the Structure Upgrade link this in the Sector Properties.
4.​ Add the resource Sector Type and name it Penguin Statue - Sector Type. This is used

to make it display correctly on the world map.
a.​ Name, Description: Add the same IDs as the Structure Upgrade.
b.​ Requirements > Required All Properties: Link to the Penguin Statue - Sector

ID.
5.​ Add the resource Colony Property: Income and name it Penguin Statue - Income. This

can give income to a city in a number of different ways.
a.​ Right click on Income Flat > New > Mana. And set the mana value to 10.
b.​ In the Structure Upgrade link this in the Colony Properties.

6.​ Add the resource Sector Property: Income and name it Penguin Statue - Adjacent
Income.

a.​ Override Screen Name: Set to False. This will automatically link the name of
this structure wherever this income is displayed in breakdowns.

b.​ Right click on Income Flat > New > Unit Production. And set the Unit
Production value to 7. This is the Draft resource, but in resources it is called Unit
Production.

c.​ Multiply by Adjacent Sectors > Required One Properties: Add Farm - Sector
ID. This will now multiply the income by the amount of adjacent provinces that
count as farms.

d.​ In the Structure Upgrade link this in the Sector Properties.
7.​ Add the resource Structure Property and name it Penguin Statue - Structure ID. This is

used as an identifier we can give to players.
a.​ In the Tome of Penguins (AoW Skill Grid: Group) link this resource to the Initial

Player Properties.
8.​ Add the resource Property: Unlock Settings and name it Penguin Statue - Unlock

Settings. This is used to unlock a variety of things and is also used for the City
Structures and Cultures. Whoever has the property automatically also unlocks all the
other things.

a.​ Property: Link to Penguin Structure - Structure ID.
b.​ Structure Upgrades: Link to Penguin Statue - Special Province

Improvement.

You can now test the mod. Choose the Tome of Penguins in faction creation. Get to 3 population
using the cheat FREEPOP when having your city selected and annex a province. Then make a
Tier 2 Town Hall using the REMBRANDT and PHILIPS cheats. Now you can build the Special
Province Improvement.

Adding a Hero Skill

1.​ In the Tome_Penguins.rpk, add a new Category and name it Tome of Penguins - Hero
Skill.

2.​ Add the resource AoW Hero Skill Group and call it Tome of Penguins - Hero Skill
Group. This allows multiple Hero Skills to be connected to a single Hero Skill Group.
This will be used to link the Tome and the Hero Skill.

a.​ In the Tome of Penguins (AoW Skill Grid: Group) link this to the Hero Skill
Group Link.

3.​ Add the resource AoW Hero Skill: Normal and name it Penguin Leader.
a.​ Screen Name, Screen Description: Make new text IDs and attach them here.
b.​ Icon: Add an icon resource under the Hero Skill, choose an icon and link it here.
c.​ AI Priority Resource Link: Set this to Hero Skill AI Priority - Medium.
d.​ CategoryLink: This determines under what category it falls for the purpose of

progressing through the Hero Skill levels. Set this to Support - Hero Skill
Category.

e.​ Level Link: Determines how many Hero Skills of the same category you need to
have to unlock this. Set it to Novice - Hero Skill Level.

f.​ Group Link: This is the last thing needed to link the Tome and the Hero Skill.
Whenever you get that Hero Skill Group, you will get all Hero Skills that have it
linked. Set this to Tome of penguins - Hero Skill Group.

4.​ Add the resource AoW Unit property: Stack property and call it Penguin Leader -
Stack Property. This allows you to have a unit give a property to other units in the same
stack.

a.​ Screen Name, Screen Description, Icon: Link the same as in the Hero Skill.
b.​ Requisite Filter > Forbidden Requisites: Add the Hero Requisite.
c.​ Requisite Filter > Required Requisites: Add the Animal Requisite.
d.​ Affects Self: Set this to False.
e.​ Stack leader Only: Set this to True.
f.​ In the Penguin Leader - Hero Skill link this to the Properties.

5.​ Add the resource AoW Unit Property: Group and name it Penguin Leader - Property
Group.

a.​ Screen Name, Screen Description, Icon: Link the same as in the Hero Skill.
b.​ Display in Unit Panel: Set to False.
c.​ In the Penguin Leader - Stack Property link this to Unit Property.

6.​ Add the resource AoW Unit Property: Ability Modifier and name it Penguin Leader -
Ability Modifier.

a.​ Screen Name, Screen Description, Icon: Link the same as in the Hero Skill.
b.​ Display in Unit Panel: Set to False.
c.​ Required Requisites: Add Melee Weapon, Ranged Weapon and Magic

Weapon. This determines which abilities get the modifier. We just added all
attack abilities.

d.​ In the Penguin Leader - Property Group link this to List.
7.​ Add the resource AoW Ability Modifier: Damage Multiplier and name it Penguin

Leader - Damage Multiplier.
a.​ Screen Name, Screen Description: Link the same as in the Hero Skill.
b.​ Display in Damage Previews: Set to False.
c.​ Display in Ability Tooltips: Set to False.
d.​ Multiplier: Set to 1.2, which is a +20% increase.
e.​ In the Penguin Leader - Ability Modifie link this to Modifiers.

You can now test the mod. Choose the Tome of Penguins in faction creation. Select your leader
and cheat HAUER. You can not choose the Penguin Leader Hero Skill in the Support category.
Add some Penguins (or other inferior animals) and see in their unit panels that their damage
increases.

And that concludes this section on creating your own Tome. Time to experiment!

Sieges
The siege system itself is set up via resources, meaning it is moddable. However, due to the
Siege Settings existing in a singular resource. Multiple siege system mods may conflict with
eachother.

To mod the Siege System, follow these steps:

1.​ In your mod, open Definitions_Sieges.rpk of the base game’s .rpk files.
2.​ Go to the Settings category, and mark the Global Settings Siege as a mod.

3.​ Within this resource, there are various options available to you to mod:
a.​ Combat Threshold and Progress Rate are deprecated and should remain on 0
b.​ Required Units Amount dictates the amount of units within an army is required

to initiate and continue a siege.
c.​ Attacker Unit Properties contians a list of Unit Properties given to besieging

units during a siege (including, during the siege battle)

d.​ Defender Unit Properties the same as Attacker Unit Properties, but for
defending armies inside the city.

e.​ Colony Properties contains a list of City Properties that a city gains while a city
is under siege.

f.​ Defender Unit Damage is the amount of proportional damage defending units
inside the city will take each turn a city is under siege. Note that regeneration is
not turned off by default, you could turn this off by giving a Unit Property in
Defender Unit Properties that blocks regeneration.

g.​ Base Siege Fortification Damage is the default amount of damage dealt to
Fortification Health of a City under Siege every turn.

h.​ Hero and Unit Tier 1 to 5 Siege Fortification Damage is the amount of damage
is dealt to Fortification Health for each hostile unit of that tier (or hero) that is
adjacent to the besieged city. This counts for every unit that fits the tier or hero
requirement.

i.​ Base SIege Projects Slots is the amount of Siege Project slots every player
starts with. Note that we grant an extra starting slot by default via a Player
Property.

j.​ Max Siege Project Slots is the maximum amount of slots a player can ever
have, even if Base Siege Projects Slots or Player Properties would grant
more. It will be clamped to this value.

k.​ Defensive Upgrade Identifier is a link to a Structure Property used to identify
which Structure Upgrades should show up in the Siege Interface

l.​ Under Siege PFX links to a PFX that will play as long as a siege is ongoing, it
will play on the center of the city.

m.​ Siege Modularity Provider links to a Modularity Provider added to the City while
a siege is ongoing.

n.​ Siege Unit Property links to the Unit Property that identifies a required unit to
start a siege. At least 1 Unit must have this property in an army to be able to start
a siege (next to having enough units as defined in Required Units Amount)

i.​ It is better to instead give the units you wish to be able to siege this
property instead of linking something else here.

ii.​ If you want all units to be able to siege, you can simply unlink it by linking
{none}

Take a look around Definitions_Sieges.rpk for more on modding specific rules or content of the
siege system!

Siege Projects
Siege Projects are granted to players as long as the pack they’re in is loaded in and conditions
(Required/Forbidden Player Properties) are met. Siege Projects themselves are easy to setup.
But it’s Siege Projects that bring siege engine units that might be a little more difficulty, more on
that can be found near the end of this chapter.

To set up a Siege Project follow these steps:
Create a new .rpk file and create a new category within it.
Create a new AoW Siege Project resource

a.​ DataStoreTag can be filled in so you can reference this Siege Project as a
hyperlink in text.

b.​ IsDefault should be set to false, if set to true, will automatically assign this
project to any empty Siege Project slot

c.​ Screen Name link the name of the Siege Project
d.​ Screen Description link the description of the Siege Project, note that costs and

Fortification Damage are automatically shown in the Siege Interface and do not
need to be shown in the Description.

e.​ Large Icon Link links to an Icon (Interface)
f.​ Targeters here is where you link Targeters that will trigger when the Fortification

Health on the City under siege reaches 0. Note that all Targeters will be centered
on the City core

i.​ This means it’s often wise to affect entire domains or provinces if you
want to do fancy World Map effects.

ii.​ You can use City/Structure targeters to target the city itself, this is often
how we add Combat Properties for during the siege battle!

g.​ Cost here you can define resource costs that need to be paid upfront to
undertake the Siege Project. You can add new resources to the cost by right
clicking on it and selecting New -> select any resource you want.

i.​ You can then fill in an amount in the newly added resource cost.

h.​ Siege Health Damage is the amount of Fortification Damage this Siege Project

will contribute each turn.
i.​ Can Stack when set to true, will allow you to assign this Siege Projects multiple

times in a single siege!
j.​ Required/Forbidden Player Properties contain lists of Player Properties that

are used as filters to know which players should have access to this Siege
Project.

And there you go! Your Siege Project should now be available to players as long as the .rpk file
containing the resource is loaded in and the conditions are met!

If you want to add in a Siege Engine Unit to your Siege Project, follow these steps:

1.​ Create a AoW Unit Category resource and in its Sets, type in any Unit Set’s Set Name.
Unit Set strings can be found in AoW Unit Set -> SetName

2.​ Create a Structure Property: Tactical Defense resource, open up its Defense Data list
3.​ Click Add, a new entry in the list called (null) should appear, select it.
4.​ Fill in the label as SIEGE_ENGINE

a.​ This is the text label used for the markers that spawn in Siege engine units during
Siege combat. All Siege Maps have dedicated markers to spawn them in specific
locations.

5.​ Set the entry’s Unit Category Link to the AoW Unit Category you created. And set
Unit is Defender to false. Press Ok to save the changes and close the Defense Data
list.

6.​ Create a new Magic - Structure Effect: Add Property resource. In this resource, link

the new Structure Property: Tactical Defense in the Structure Properties list.
7.​ Create a new Magic - Structure Targeter: Single resource. In this resource, link your

Magic - Structure Effect: Add Property in the Effects list.
a.​ Make sure to check if Friendly Fire Type isn’t set to Own Stuff Only,Friendlies

Only or Nothing.
8.​ Link your Magic - Structure Targeter: Single in your AoW Siege Project’s Targeters

list.

Your Siege Engine Siege Project is now ready!

Adding a Cultures

Culture Setup
1.​ Create a new package.
2.​ In Content > Resource Packs add the following packs:

a.​ UNIT_MODULARITY.RPK
b.​ CULTURE_DEFINITION.RPK
c.​ SHAREDMODIFIERS_UNITPROPERTIES.RPK
d.​ UPGRADES_BASEABILITY_UNITPORPERTIES.RPK
e.​ EQUIPMENT.RPK
f.​ TRAITS_BACKGROUND_CHARACTERS.RPK

3.​ Create a new Category.
4.​ Add the resource AoW Faction Property Giver.

a.​ Type: Set to Culture.
b.​ Add a Screen Name. And optionally a Description, Lore and Bio Description

and Icon.
c.​ Provider: This is used for the default visuals of the faction. Set this to any of the

existing cultures.
d.​ Hero Affinities: Despite the name, this is the affinity given to both the player

empire and the race (and therefore also Heroes). Right click to add an affinity
type. You can add multiple affinities here. Then change the value(s) from 0 to 1 or
2.

5.​ Add the resource Player Property.
a.​ In AoW Faction Property Giver, you can now link this resource to the Player

Properties.
6.​ Add the resource Property: Unlock Settings.

a.​ Property: Link to the Player Property.
b.​ Structure Upgrades: Link to any City Structures or Special Province

Improvements that the culture needs. Note that this does not include City
Structure replacements.

c.​ Leader Backgrounds: This is the list of equipment you normally choose from in
faction creation. You can link to a Shock, One handed + Shield, Ranged, Orb and
Staff Equipment Background here. Note that these must have the AM identifier.
(Standing for Ascended Mortal/Champion)

d.​ Hero Backgrounds: These are for Heroes with this culture you recruit later
during gameplay. You can just link to the same backgrounds as for Leaders.

7.​ Add the resource AoW Culture Unit Link Data.
a.​ Culture Link: Link to the AoW Faction Property Giver.
b.​ Units: Link the units that belong to this culture. To learn how to create units,

check out Creating a new Unit.
8.​ Add the resource AoW Culture Transport Settings. This defines the boats the culture

will use.

a.​ Culture Link: Link to the AoW Faction Property Giver.
b.​ Movement Requisites: Link to Water Movement Requisite.
c.​ Extra Properties: Link to the following properties:

Naval Units - Group
Embarked - Penalty
Water Unit Vision Boost - Unit Property
Default Transport Movement Settings Override - Property

d.​ Provider: Link to Unit Type: Transporter.
9.​ Add the resource City Culture Settings.

a.​ Culture Link: Link to the AoW Faction Property Giver.
b.​ Culture Property Link: Link to the Player Property.
c.​ Defender Settings: This determines the unit compositions that are used when

armies are spawned on the world map. This is used for your starting army and for
the armies that Free Cities use to defend their nodes.

d.​ Defenders: UnitPool Category Name: Add an unique identifier for this. This
needs to be filled in.

e.​ For the other defender options, you can see how another culture is set up. By
default, the Spawn Strength is set to Weak and the defenders increase in Tier
and number the stronger it is.

f.​ Reinforcement Settings: This is a fallback system when a Ruler has no units
left. You can copy the settings from the previous step.

g.​ Garrison Spawn Strength: Set to Disabled.
h.​ Forward Base Garrison Spawn Strength: Set to Disabled.

10.​Add the resource AoW: Name.
a.​ Type: Set to Culture.
b.​ Culture: Link to the AoW Faction Property Giver.
c.​ Unlocks: All of these options need to have at least 1 text ID linked to it. You can

make your own names or link to IDs used by other cultures.

You can now test your modded culture by launching the game, creating a new game and race
and choosing your culture.

Culture Research
The research provided by cultures functions the same way as the research given by Tomes.

1.​ Create a new .rpk and save it in the packs folder.
2.​ Follow the guide on Tome Setup, with the following exceptions:

a.​ Set the Tier of the tome to Tome - Default Tier.
b.​ Do not add the AoW Skill Grid Group: List Data Settings, since we will directly

link the research in the culture. It should not show up as a possible Tome choice
during gameplay.

3.​ Add any research skills you want. How to make those can be found in the chapters of
Adding a New Tome.

4.​ Go back to the modded culture.rpk.
a.​ Go to Content > Resource Packs > Add and link the new modded culture

research.rpk you made.
b.​ In the AoW Faction Property Giver, you can now link the Skill Grid: Group to

the Skill Groups.

Culture City Structures/Special Province Improvements
To add a new City structure or Special Province Improvement:

1.​ In the Property: Unlock Settings, go to the Structure Upgrades. You can link to any
City Structure or Special Province Improvement you want the culture to have.

2.​ To learn how to make new City Structures check out Adding a City Structure in the Tome
section of this guide.

3.​ To learn how to make new Special Province Improvements check out Adding a Special
Province Improvement in the Tome section of this guide.

4.​ Unlike the default game, it is easier to just put the City Structures and Special Province
Improvements directly in the modded culture.rpk. And for organization purposes you can
give them their own category.

You can also override the default city structures with cultural unique variants. This is done via
the City Culture Settings.

1.​ Right Click the Culture Structure Upgrades and select the City Structure you want to
replace.

2.​ Expand the newly created line. Link the City Structure you want to replace it with.
3.​ Cultures usually also replace the Town Hall II, Town Hall III and Town Hall IV with cultural

unique versions. But this is not required.

Culture Hero Skills
To learn how to make new Hero Skills check out Adding a Hero Skill.

1.​ In AoW Faction Property Giver, you can now link this resource to the Hero Skill
Group Link instead of linking it to the Tome.

Units and Heroes

Creating a new Unit
It is recommended to look at existing units and find one that is similar to what you want to
achieve. You can copy the unit, paste it in your mod and use it as a base to work from.

1.​ Add the resource AoW Unit.
2.​ Figure Settings: This determines things like the size of the units and how many

members the unit has and in what kind of formation they are standing.
3.​ AI Priority Resource Link: This determines how the AI decides to recruit units. By

default always put this on Unit AI Priority - Medium.
4.​ Tier Resource Link: This determines the Tier of the unit. This influences the base HP,

defense, resistance, status protection, upkeep and XP requirements. It will also be used
as an identifier for many other effects.

5.​ Type: This is the unit role, such as Shock or Polearm units. Many have default properties
that are given automatically according to their unit role.

6.​ Subtype: Optional identifiers that are used for animals, elementals or fiends for
example. They also contain properties that are inherently given. They are also used for
identifiers for conditional effects.

7.​ Is Player Race Unit: If this is turned on, the unit will be a racial unit and benefit from
race transformations. It will also cause their visualization to try and use the modularity
system to create a racial variation of the unit. Check out Modularity for more information.

8.​ Summon Type: This determines when a unit counts as ‘being summoned’. They will be
given the Magic Origin property and require Mana for their Upkeep. By default leave this
on When Summoned.

9.​ Requisites: Requisites are used as identifiers and they can give unit properties. They
are one level above properties, as such a property cannot give a requisite. Generally, a
requisite is permanent, and won’t be taken away during gameplay, but it can be given.

10.​Preferred Ability Link: Link the active ability that is used for the main attack of the unit.
11.​Properties: You will link all passive and active abilities here.

a.​ All units have one of the properties that are formatted as follows: Armor
(Average) Resistance (Average) HP (Average) - Stat Bonus.

b.​ While HP scales with the unit tier, the damage the unit deals does not. Add Base
Strike damage modifiers as appropriate.

12.​Defense Mode Link: For most units, link the default Defense Mode here. Normally only
shield units use the Defense Mode - Shield Wall and only support units use the
Defense Mode - Warding.

13.​Upgrades: Upgrades can be used to give properties using some extra logic like
replacing other upgrades or requiring upkeep. You always want to add one of the
movement upgrades here: Land Movement - Unit Upgrade, Floating Movement - Unit
Upgrade, Flying Movement - Unit Upgrade or the Swimming Movement - Unit
Upgrade.

14.​Screen Name: Link to the ID of the name of the unit.
15.​Provider: Add a Modularity Component to ensure the unit has visuals.
16.​Required Structure Property Link: If you want a player to be able to recruit this unit in

cities, add a Structure Property here. Then you want to give the structure property to
the player via Research Skills, Cultures or other sources.

17.​Cost Data Link: This determines the Gold and Draft cost to recruit the unit.

Make a unit recruitable
1.​ Add the resource AoW Culture Unit Link Data. Despite the name, this is not exclusively

used for cultures. Any unit linked in here becomes immediately available for recruitment
for everyone!

2.​ Add the resource Structure Property. This is just an identifier we will give to colonies.
a.​ In the AoW Unit > Required Structure Property Link you can now link this

property. This means that the unit will no longer show up for everyone, but only
for those with this Structure Property.

3.​ To unlock via Research: In the AoW Skill Grid: SubSkill, Instead of using as Player
Property, you can link to the Structure Property.

Alternatively, you can give this structure property via City Structures, Special Province
Improvements, race traits or anywhere else where you could give a structure property.

Creating a Passive Property
Unit Properties
There are various unit properties that add different passive effects to a unit. They need to be
added in AoW Unit > Properties.

1.​ Screen Name: Always add an ID here, even if you won’t display this property. Otherwise
the resource will not work.

2.​ Screen Description: Add a description via a text ID here.
3.​ Large Icon Link: Link the icon this property will use.
4.​ Display in Unit Panel: If this is set to false, this property will not show up in the unit

panel.
5.​ Display Counts: Only relevant if the property can be given multiple times, which by

default is only used for specific Status Effects.
6.​ Display Type: When set to primary it will be displayed in the Unit Panel. Secondary will

display it smaller and at the top, on the same level as the unit types. Important will
display it both in the Unit Panel but also in the bottom panel when selecting the unit in
combat. By default this is used for damage responses.

Example Unit Properties

●​ AoW Unit Property: Stat Bonus: Give extra HP, Defense, Resistances and/or Vision.
●​ AoW Unit Property: Status Resistance: Specifically give Status Resistance.

●​ AoW Unit Property: Magic Effect Shield: Used for damage response. To either
damage the attacker or inflict them with status effects.

●​ Aow Unit property: Auto Spell: This allows you to add new targeters to the unit when a
certain trigger takes place, such as End of Turn, Any Spell Cast and On Friendly Unit
Dies. The targeters can target the unit itself or all adjacent enemies for example.

Ability Modifiers
Some passives affect a unit's abilities. Such as increasing damage in certain scenarios or
applying extra effects to attacks.

1.​ Add the Resource AoW unit Property: Ability Modifier.
2.​ Add a Screen Name but otherwise you generally won’t need to add a description or icon

since you want to display the Ability Modifier inside of the ability.
3.​ Modifiers: Add the Ability Modifiers that will be applied.
4.​ Requisite Filter: This filter allows you to tell the system on what abilities the modifiers

can be applied on. All abilities have requisites such as Melee Strike (Base), Ranged
(Base) and Magic Weapon (Base). The non-basic attacks (often abilities with
cooldowns) use the same naming convention but do not include the suffix (Base).

Example Ability Modifiers

●​ AoW Ability Modifier: Damage Multiplier: A damage multiplier on the base damage
that has the option to only be conditionally applied for attacking enemies with specific
requisites or properties, Attacks of Opportunities, Flanking, Hexes Moved, Crits, First
Strike and whether it is your turn.

●​ Aow Ability Modifier: Extra Effect: You can add status effects the attack will inflict
here. It has the same filters.

●​ AoW Ability Modifier: Extra Targeter: You can add extra targeters such as a Circle,
Line or Caster with entirely new effects.

Creating an Active Ability
1.​ Add the resource Aow Unit Property: Ability.
2.​ Combat behavior settings: This is used for the animation and PFX for the ability. You

can often link a behavior that starts with Melee or Magic that fits.
3.​ Add the Screen Name, Screen Description, Large Icon Link as appropriate.
4.​ Ability Type: Determines how many action points the ability uses.

5.​ Accuracy Settings Link: Sets the range and accuracy of the attack with the amount of
accuracy falloff per hex. For melee attacks just use Melee - Can’t Miss. Most buffs and
debuff abilities use the Can’t Miss accuracy settings with a specific range.

6.​ Requisites: The identifiers for this ability. You can identify this as a basic ability, an
active ability or whether it is a support or summon for example. These determine what
other effects from Unit Enchantments, buffs or debuffs can be applied on this ability.

7.​ Cooldown: Non-basic active abilities often have a cooldown of at least 1.
8.​ Blocked When Engaged: You want to set this to true if you want a spellcasting or

ranged unit to be unable to use this ability in melee.
9.​ Event Type: Make this match the type of ability this is. Cast spell is used for magic

attacks or buffs.
10.​Event > Targeters: Add at least 1 targeter here. Often this will be the Magic - Tactical

Unit Targeter: Single. In the targeter you can add Effects such as Magic - Tactical
Unit Effect: Damage or you can link to status effects you want to apply..

11.​Primary Effect Link: This is used for displaying effects in the UI. Link to your primary
effect such as tactical damage or the status effect.

12.​Allow Move and Use: This automatically moves the unit in range to use the ability. For
melee this is often true, but for ranged abilities this is normally set to false.

Creating a Status Effect
A status effect is technically a property you give to units via effects. These can be applied via
Unit Abilities or via Spells. For spell only status effects you can skip step 1.

1.​ Add the resource AoW Ability Modifier: Extra Effect: This is given to a unit to apply the
status effect. This can then be given to a unit ability directly or via a Unit Enchantment or
Race Transformation.

a.​ Add an Effect Name and Effect Description.
b.​ Conditional Logic: If you have multiple effects you don’t want to be used and

displayed multiple times (for example multiple versions of Poisoned with a
different chance to apply) you can make a group here and add a priority.

c.​ Targeting: You can add extra logic for applying the Status Effect here, but that
will normally be done in Magic - Status Effect Description.

d.​ Effects: This will link to the effect that will add a property. Or you can put a
resistance check in between.

2.​ Optionally, add the resource Magic - Tactical Unit Effect: Resistance Check: This will
allow the recipient the chance to resist the effect using their Status Resistance.

a.​ Strength: Every point represents a 10% base chance to inflict the status effect.
b.​ Success Effect Link: This will link to the effect that will add a property.
c.​ In AoW Ability Modifier: Extra Effect link this to the Effects.

3.​ Add the resource Magic - Tactical Unit Effect: Property: This bridges the effect and the
property.

a.​ In AoW Ability Modifier: Extra Effect or link this to the Effects.
b.​ Or in Magic - Tactical Unit Effect: Resistance Check link this to the Success

Effect Link.
4.​ Add the resource Magic - Status Effect Description. This is the actual status effect.

a.​ Property Link: This will link to the property that will contain what the status effect
does to the unit.

b.​ Tooltip Text: Add this text ID: PROPERTY@GAIN_PROPERTY
c.​ Num Turns: This value is how many turns this status effect is active for.
d.​ Type Link List: This is no longer currently used in Age of Wonders 4.
e.​ Target Property Filter > Forbidden Properties: This is where immunities are

placed to determine what units will not be affected by this status effect.
f.​ Blocked String Effect: You can link a text ID here explaining why the status

effect does not work.
g.​ Opposing Property Links: This is used for the dispelling system. Whenever one

of the status effects linked here would be applied while this status effect is
present, the two instead cancel each other out and both are removed.

h.​ AI Is Positive: Set this to false if the status effect is negative. Otherwise the AI
won’t use abilities or spells using this status effect properly.

i.​ AI Allow Dispel: Set this to false if the status effect should not be allowed to be
dispelled.

5.​ Now link a property or make a property for this status effect to link to the Property Link.
To learn how to make properties, check out Creating a Passive Property.

Adding Race Traits

Body Traits
1.​ In the pack you will put your traits in, go to Content > Resource Packs and add

RACETRAITS_WORLD>RPK and FORMTRAITS_WORLD.RPK.
2.​ Add the resource Aow Trait.

a.​ Type: Set this to Body.
b.​ Screen Name: Link to a text ID.
c.​ Screen Description: You can describe the effect for the form traits here.
d.​ Lore: This is used to give a quick pitch on why you would want this trait.
e.​ Screen Bio Description: This is used to create the race bio.
f.​ Effect Descriptions: Instead of the Screen Description, you can list the bonuses

separately here. This could be useful if you need to use the same effect between
multiple traits. (And for us developers it was useful for translations.)

g.​ Incompatible Race Traits: This is meant for Society Traits to be mutually
exclusive.

h.​ Incompatible Forms: This is meant to make Body and Mind Traits limited to
certain Forms.

i.​ Affinities: Right Click to add affinity or an alignment shift to this trait.
j.​ Player Properties: All linked player properties will be given to the player that has

chosen this trait in faction creation. It does nothing for players who later get a
race with this trait.

k.​ Unit Properties: All linked properties will be given to the units that belongs to this
race.

l.​ Colony Properties: All linked properties will be given to all cities of that race.
m.​ Starting Race Trait Properties: These make use of a category of resources that

all start with Starting Race Trait Property. They are used to give starting
bonuses for the player that chooses these traits during faction creation.​

n.​ Unit Upgrades: All linked upgrades will be given to the units that belongs to this

race.
o.​ Mount Link: You can make an AoW Faction Mount resource and link it here to

make your race benefit from an exotic mount.
​

Mind traits
Mind Traits are mostly the same as the body traits but with the following differences:

1.​ Set the Type to Mind.
2.​ Starting RMG Theme: This forces the player to have some of the specified theme

around them. This is used for adaptations.
3.​ Starting RMG Overlay: This forces the player to have some of the specified overlay

around them. This is used for adaptations.

Society Traits
Society Traits are mostly the same as the body traits but with the following differences:

1.​ Incompatible Cultures: This is meant to make Culture Traits limited to certain Cultures.

Adding Realm Traits
Realm Traits are the modifiers that can be added to realms in Age of Wonders 4. Changing the
world map generation and altering the player experience by adjusting some of the rules in the
world map. A lot of the existing realm traits can be used to check what kind of modifiers are
possible!

Tip: to get inspired or look at example traits, look at Empire_Core.rpk where most of the base
game’s realm traits are set up!

Realm Traits are Player Empire: World Trait resources, which can hold multiple links to
settings that are meant to define or override specific parts of RMG.

●​ Name, Description and Icon to display and describe the realm trait in Realm Trait
selection.

●​ Category which dictates what slot this Realm Trait will occupy.
●​ Sub-Category, which will automatically create or join the realm trait in a sub-header

inside of realm selection, such as “Free City Modifiers”
●​ Is Default which when set to True will make this realm trait automatically picked when

creating a new Realm. You usually want to keep this set to False.
●​ Mutually Exclusive which is a list of linked Player Empire: World Traits that cannot be

picked in the same realm as this Realm Trait. It helps eliminate thematic mismatching or
helps prevent mixing of Realm Traits that are incompatible.

●​ Resource Pack File where you can type out the exact filename of a .rpk file that will be
loaded in only when the realm trait is active. In such .rpk files you can often put custom
content like Trigger Scripts.

○​ It is important these .rpk files do not get loaded in by default, as some content will
automatically be picked up by the game and applied even when the realm trait
was not chosen.

●​ Type which has several options to inform the resource what kind of content can be
linked directly to the realm trait (in addition to, or instead of, the Resource Pack File)

○​ User Settings choosing this will allow you to link several User Setting
resources, which are used for RMG.

○​ Houses setting is deprecated, no need to use this.
○​ Inhabitants choosing this will allow you to link several Player Empire:

Inhabitants resources, which can dictate premade AI empires that should
appear in the realm.

To set up a new realm trait, follow these steps:

1.​ While having your mod loaded in the Package Manager, open the Resource Editor and
create a new .rpk file.

2.​ Save the new noname.rpk in the Mod’s /packs folder, name it something like “Realm
Trait [realm trait name] Definition”

3.​ In this new .rpk file, create a category, it can be called “Realm Trait Definition”

4.​ In here, create a Player Empire: World Trait resource. Name it something like “Realm
Trait: [name]”

5.​ Link a string to the name, description, and link an icon (link to an Icon: Interface
resource). See Adding Text on how to create custom text for this realm trait. Realm
Traits that miss these may not show up in the game.

6.​ Make sure to also set its Interface Stuff -> Category correctly to make sure it shows up
in the right realm trait slots.

7.​ Make sure to save the .rpk file by hitting CTRL + S.
8.​ Don’t forget to load the new .rpk file by adding it to the Content list in your mod’s .acp

file!

You’re done! The new realm trait should now show up in the list of available realm traits in the
right slot! And its content will only be activated when said realm trait is active in a session!

Geography Traits
Geography traits are Realm Traits that alter the shape and distribution of the land and oceans
of the world that are generated by RMG when starting a new game. The shape of the world will
impact the flow of expansion and movement of armies. Only one Geography trait slot exists, so
you cannot combine multiple in a single realm.

To set up a new Geography trait, follow these steps:

1.​ Set up a new Realm Trait using the steps in Adding Realm Traits.
2.​ Create a Player Empire: User Setting resource in your RealmTrait[name]Definition.rpk

file, set its Type to Map Type
3.​ Now create a RMG Map Type Definition resource, and populate it with settings you

would like it to have.
a.​ To gain access to some of the premade settings to link in your RMG Map Type

Definition. Go to Content -> Resource packs and Add
RMG_Definitions_Strategic.rpk, RMG_Sectors_Strategic.rpk and
RMG_Strategic.rpk packs to the required content list of your Realm Trait’s .rpk
file.

4.​ Go to your Player Empire: User Setting resource, in the Map Type link, link up your
RMG Map Type Definition

5.​ Go to your Player Empire: World Trait resource, set its Type to User Settings in the
Entries list, link up your Player Empire: User Setting.

6.​ Make sure to save the .rpk file by hitting CTRL + S.

Your new Geography trait is now set up and ready to be picked in Realm Customization!

Clime Traits
Clime traits are Realm Traits that define the distribution of Climes and Overlays, creating a very
thematic realm such as a tropical realm filled with Tropical and Desert climes, devoid of arctic.

To set up a new Clime trait, follow these steps:

1.​ Set up a new Realm Trait using the steps in Adding Realm Traits.
2.​ Create a Player Empire: User Setting resource in your RealmTrait[name]Definition.rpk

file, set its Type to Map Geography
3.​ Now create a RMG Geography Template Override resource.
4.​ In this new resource, set Override Theme Weights and Override Overlay Weights to

true. You can also set any other overrides to true you wish.
5.​ You can now populate the Theme Weights and Overlay Weights with numbers to

indicate the composition of climes/overlays you wish to have the RMG use.
a.​ The number scale does not matter, as the game will add all numbers together

and use that to determine the relative amount of a clime or overlay. But for ease
of use, try to use percentages.

6.​ Go to your Player Empire: User Setting resource, in the Map Geography link, link up
your RMG Geography Template Override.

7.​ Go to your Player Empire: World Trait resource, in the Entries list, link up your Player
Empire: User Setting.

8.​ Make sure to save the .rpk file by hitting CTRL + S.

Your new Clime trait is now set up and ready to be picked in Realm Customization!

Tip: You can also include custom content like scripts in Clime traits to, for example, attach
Combat Enchantments to all provinces of a particular type! For how to do this, check out Misc
Traits!

Inhabitants Traits
Inhabitants traits are Realm Traits that change the army compositions of independents and
infestations in the realm. To fit a more thematic challenge when conquering the realm.

To do this, we’ll be needing Trigger Scripts and Tag Filters that will find and override or
infiltrate Unit Pools of locations on the world map.

-​ Infiltrating Unit Pools means adding on top of existing Unit Pools, such as adding Dire
Penguins as a valid unit to all structure guards!

-​ Overriding Unit Pools means discarding the previously used Unit Pool and replacing it
with one of your own choosing. When overriding, make sure there’s enough units of
varied tiers in the new unit pool.

To set up a new Inhabitants trait, follow these steps:

1.​ Set up a new Realm Trait using the steps in Adding Realm Traits.

2.​ Create a new .rpk file, save it in your mod’s packs folder and name it something like
“RealmTrait[name]Content.rpk”.

3.​ In this new .rpk file, create a Trigger Script, a Tag Filter, and a AoW Unit Pool
resource.

4.​ In the AoW Unit Pool, define the units and/or unit enchantments and transformations
you wish to infiltrate or override existing Unit Pools with!

5.​ In the Tag Filter, specify the filter for world map locations that you wish to change the
guarding units of.

a.​ If you want them to affect all structures and pickups, use a filter with One or More
of the following must be True: Contains Inherited Structures
[Worldmap.Structures]

b.​ If you want to filter more specifically, filter with tags that are part of Modularity ->

Structures, such as Modularity -> Structures -> MagicIngredient or Modularity ->
Structures - > Ocean.

6.​ Open the Trigger Script, and make sure the triggered [EVENTS] is A structure spawns
units for the first time if you want to affect structure guards and/or A pickup spawns units
for the first time if you want to affect pickup guards.

7.​ In the Trigger Script’s [ACTIONS]. Use either
a.​ Structure - InfiltratePools if you want to infiltrate the pools of structures, only

use this if A structure spawns units for the first time is present in [EVENTS]
b.​ Structure - OverridePools if you want to override the pools of structures, only

use this if A structure spawns units for the first time is present in [EVENTS]
c.​ Pickup - InfiltratePools if you want to infiltrate the pools of pickups, only use this

if A pickup spawns units for the first time is present in [EVENTS]
d.​ Pickup - OverridePools if you want to override the pools of pickups, only use

this if A pickup spawns units for the first time is present in [EVENTS]
8.​ If you use BOTH A structure spawns units for the first time and A pickup spawns units for

the first time. Make sure to add an IsValid, Structure[Triggering] check to make sure it’s
either a Structure or a Pickup that triggered the event. Below is an example of such a
check:

9.​ In the InfiltratePools and OverridePools [ACTIONS], link the AoW Unit Pool and Tag

Filter you’ve made. And set the target to be Structure[Triggering] or
Pickup[Triggering].

10.​Hit OK, make sure the Trigger Script has Enabled and Active ticked, but has
Deactivate After Triggering not ticked.

11.​Save the .rpk file by hitting CTRL + S.
12.​Go back to the RealmTrait[name]Definition.rpk file and select your Player Empire:

World Trait resource.
13.​In the Content File -> Resource Pack File, type the exact filename of your Realm

Trait’s content .rpk file. If you followed the instructions, it should be called
“RealmTrait[name]Content.rpk”.

14.​Save the .rpk file by hitting CTRL + S

Note: Do not link the new RealmTrait[name]Content.rpk file in your mod’s Required Content
list. It will instead be dynamically loaded when the realm trait is chosen! Else the Trigger
Scripts will always be active and affect every realm you play with the mod active!

Your new Inhabitants trait is now set up and ready to be picked in Realm Customization!

Presence Traits
Presence Traits are Realm Traits that add one or more specific rulers and empires to the map
as a special opponent for the other players to deal with. These special rulers and empires often
come with extra starting conditions for them and a Quest for all normal players to defeat the
special ruler/empire as a victory condition.

These traits can be very complex. And can use things like Trigger Scripts, Story Events,
Quests, and RMG resources to create a modified starting empire for the special ruler.

To set up a new Presence Trait, follow these steps:

1.​ Set up a new Realm Trait using the steps in Adding Realm Traits.
2.​ Create a new Player Empire: Inhabitants resource, in this resource you can set up a

bunch of settings:
a.​ Alias fill in a string that will be referenced in scripts to get a reference to this

ruler. It’s suggested to use Capitals and underscores, EG:
CUSTOM_REALM_TRAIT_RULER_1

b.​ External Income which will be extra permanent income for this ruler which can
increase the difficulty of conquering this ruler.

c.​ Leader which contains a link to a Lord Definition resource to define the Ruler
and its race.

d.​ Leader Locked which when set to false disables customization of the ruler.
This is not relevant for AI controlled Rulers.

e.​ Leader Level is the number of levels the ruler starts out with at the start of the
game. AI’s will automatically spend skill points.

f.​ Team can assign a team from A to D. Rulers with the same team at the start of
the game will be locked in an unbreakable Alliance with one another.

g.​ Controller can assign an AI difficulty or even a human player as the controller of
this Ruler.

h.​ Controller locked which when set to false disables the ability for the player to
change the AI difficulty in the Advanced Settings of the realm when creating a
realm with this Realm Trait active.

i.​ Combat Advantage which determines the assigned combat advantage setting to
the ruler. It can modify the damage that is inflicted by and taken by units from the
Ruler’s empire.

j.​ Starting Skills where you can link Research Skills the ruler will start unlocked
with.

k.​ Hero Spawning Enabled which when set to false, will have the Ruler not
spawn/recruit any heroes apart from their Ruler.

l.​ Allow Houses to Match Race which when set to false, will have no houses
spawn that are inhabited by the Ruler’s race.

m.​ Lord Selection List where you can link multiple Lord Definition resources, it
will pick a random one from the list to use when the Realm Trait is picked in the
game.

n.​ Allowed Forms and Allowed Cultures which contain lists of AoW Faction
Property Giver resources, which should be Form or Culture Properties in the
right lists. This will be used to generate/pick a Ruler if Lord Selection List or
Leader are empty.

3.​ In your Realm Trait’s .rpk file, go to Content -> Resource Packs and Add lords.rpk to
the Required Content list.

a.​ This will be very handy to link premade leaders, or else have resource
dependencies set up to create your own.

4.​ If you want to create your own custom ruler/empire, then create a Lord Definition
Resource, link it to the Player Empire: Inhabitants` Leader, check out Making/Sharing
Premade Factions for how to create custom Rulers/Factions.

a.​ If you will be using an already made premade leader, link it to the Player Empire:
Inhabitants` Leader

5.​ If you wish to include additional content, such as Trigger Scripts, Events and Quests,
you’ll need to create a new .rpk file and type its exact filename in your Player Empire:
World Trait -> Content File -> Resource Pack File.

a.​ In this new .rpk file, put your custom content. Remember that you can use the
Player Empire: Inhabitants -> Player Settings -> Alias string to reference a
custom ruler in scripting.

Note: Presence Traits are quite complex and prone to bugs when not set up correctly. If you’re
unsure how to make parts of it work, check out the Empire_Core.rpk which contains all the base
game Realm Traits. Additionally, when loading in extra content such as Trigger Scripts, do not
link the new RealmTrait[name]Content.rpk file in your mod’s Required Content list.

Your new Presence trait is now set up and ready to be picked in Realm Customization!

Misc Traits
Misc Traits are Realm Traits that modify the gameplay experience in the realm either in the
world map or in combat. Which otherwise would not fall within the previous categories. They
often provide smaller twists and modifiers that you’d want to combine with other Realm Traits.
Such as Combat Enchantments or Increasing abundance in particular locations in the world
map.

Misc Traits often load in content .rpk files with Trigger Scripts to enable their effects. For this
example we’ll be adding a Combat Enchantment to all combats in the world.

To set up a new Misc Trait, follow these steps:

1.​ Set up a new Realm Trait using the steps in Adding Realm Traits.
2.​ Create a new .rpk file, save it in your mod’s packs folder and name it something like

“RealmTrait[name]Content.rpk”.
3.​ In this new .rpk file, create a Trigger Script resource.
4.​ In this new Trigger Script, make sure Enabled, Active and Deactivate After

Triggering is ticked.
5.​ Go into the Script and add Time - NewRound in [EVENTS]
6.​ Add Sector - AddGlobalProperty in [ACTIONS] and link the Combat Property resource

you’d like to use.
a.​ Go to Content -> Resource Packs and Add CombatProperties_Tactical.rpk in

the Required Content list to gain access to a lot of the base game’s Combat
Properties.

b.​ Alternatively, you can create your own Combat Property.
7.​ Hit OK to confirm the script and save the .rpk file by hitting CTRL + S.
8.​ Go back to the RealmTrait[name]Definition.rpk file and select your Player Empire:

World Trait resource.
9.​ In the Content File -> Resource Pack File, type the exact filename of your Realm

Trait’s content .rpk file. If you followed the instructions, it should be called
“RealmTrait[name]Content.rpk”.

10.​Save the .rpk file by hitting CTRL + S

Your new Misc trait is now set up and ready to be picked in Realm Customization!

Making/Sharing Premade Factions
Premade factions/rulers are Lord Definitions that can be used for multiple purposes,
depending on its setting:

●​ Show up in Front End to be selected when a player selects their Ruler.
●​ Not show up in Front End, but be able to show up as an AI Ruler
●​ Be used in certain custom scenarios, such as in Presence Trait as shown in Adding

Realm Traits -> Presence Traits
To check out how our own Premade leaders were set up, look at Lords.rpk.

To set up your own new Premade Faction/Ruler, follow these steps:

1.​ Create a new .rpk file and name it something like “[modname]Lords.rpk” and create a
Category called something like Lord Definitions.

a.​ To gain access to a lot of resources that Lord Definition resources want to use,
go to Content -> Resource Packs and Add Lords.rpk in the Required Content
list.

2.​ Create a new Lord Definition resource, this is where your custom premade faction will
be defined.

3.​ In the new Lord Definition, there are several settings you should set up to make your
custom faction to be valid:

a.​ Lord Data -> Essence should link to Versatile Essence - Faction Property Giver
b.​ Lord Data -> Skin dictates the form of the ruler, should link to any form Property

Giver, such as Humans Form - Property Giver
c.​ Lord Data -> Culture dictates the culture of the ruler, should link to any culture

Property Giver, such as Feudal Culture - Faction Property Giver. Should be the
same as the ruler’s race, and should even link to a culture if the ruler is a wizard
king!

d.​ Customization Items, where you can link up customization items to adjust the
appearance of your custom Ruler.

e.​ Fill Customization Defaults, which when set to true, will use randomized
customization options when there are valid customization items missing in the
Customization Items list

f.​ Identification Set which determines the empire’s icon and colors, it holds an
IconSet for the empire’s icon, ForegroundSet for secondary color and
BackgroundSet for primary color.

g.​ Name Link which links to a Hero Name resource, you can either link an existing
one or make your own.

h.​ Title Link which links to a string that should be the Title of the ruler, such as
Chaos Prince or High Priestess

i.​ Race Name Link which links to a Race Name resource, you can link to an
existing one or make your own.

j.​ Race Bio Link which links to a string that describes the Ruler’s Race, leaving it
empty will use the generated Race Bio based on the race’s traits.

k.​ Type Template which links to a Lord Type Template resource, you can either
link to an existing one or make your own. If you wish to make a Champion, select
one of the AM Lord Type Templates, if you wish to make a Wizard King, select
one of the WK Lord Type Templates.

l.​ Leader Tags where you can link tags to identify this particular ruler. Sometimes
used for Scripting or Events.

m.​ Tech Specialization Link should remain empty.
n.​ Faction Culture dictates the culture of the ruler’s race, this should link to any

culture Property Giver.
o.​ Faction Essence should link to Versatile Essence - Faction Property Giver

p.​ Faction Skin dictates the form of the ruler’s race and should link to any form
Property Giver, such as Humans Form - Property Giver.

q.​ Faction Customization list which can force particular customization options to
appear on the ruler’s race, such as hair colors or armor colors.

r.​ Faction Race Traits where you should link the Society Traits you wish to give
the ruler’s race. Linking race traits together that normally are incompatible can
lead to either of them working incorrectly!

s.​ Body Trait Override where you can set the ruler’s race’s Body Trait. If you
leave it empty, it will pick the default option of the race’s chosen Form.

t.​ Mind Trait Override where you can set the ruler’s race’s Mind Trait. If you leave
it empty, it will pick the default option of the race’s chosen Form.

u.​ Player Chosen Mount Link where you can link a mount for the race’s units. You
can leave this empty for the default horse, or if you’ve linked a trait that grants a
special mount.

v.​ Initial Tome where you can link the tomes this ruler starts with. The default is to
pick a single Tier 1 tome if you’re making a ruler that’s exposed in the premade
ruler list.

w.​ Hero Properties which contains a list of unit and hero properties the ruler starts
out with. Normally you’ll want to link one of the Equipment Background Traits of
the correct ruler type. Such as Equipment Background Trait - WK - Spirit Staff for
a wizard king that starts out with a spirit staff.

x.​ AI Profile which should link to Default Profile
y.​ Personality Trait (Optional) where you can define the ruler’s diplomatic

personality. If you leave it empty, one will be randomly chosen each time the ruler
appears under AI control.

z.​ Can Be Starting Lord which when set to true can make the ruler appear as an
AI faction.

aa.​Can Be Edited which when set to true will allow the player to adjust the
appearance of this ruler if they come under control of this ruler.

bb.​Available in Game Lobby which when set to true will show this ruler in the
Premade Ruler list when picking a new ruler to start a game with.

cc.​Display Order which will dictate the order of this ruler when displayed in the
premade ruler list. Only works if Available in Game Lobby is set to true.

dd.​Tags which are tags to identify this Lord Data set. These are not given to the
Ruler unit itself, for that, use Leader Tags

When all these have been set up with valid data, your ruler is ready to be used for multiple
purposes, either as a premade ruler, as a special AI ruler, or for Presence Traits!

Adding Leader Customization Items
To add customization items for use in the Faction Creation Appearance step, we need the
following:

●​ A Content Library containing all the meshes, textures and materials we want to have as

customization items
○​ The mesh requires to be skinned to a bone within the respective rig of the

leader type we’re creating a customization item for. More on that in the FBX
Notes section

●​ A Modularity setup to be able to use these meshes in the game

For this section we also have some example files again. These are provided alongside this
guide. The relevant files are:

●​ Block_Head.fbx
●​ Block_Head_Diffuse.png

Create a Content Library containing the above. We need a mesh, with a material; using the
supplied texture. If you don’t know how to do this yet, check out the Adding Content Libraries
section. We’re saving the content library under the Libraries directory in the mod’s folder
hierarchy, under the name Block_Head_Meshes.clb.​
​
Of course, you can also use your own meshes, which you can set up through the Preparing
For Export - Skinned Meshes section under the FBX Notes. For now let’s keep things simple
and implement the Block Head helmet customization we have provided.

Step by Step Guide

1.​ In the Package Manager, go to Tools > Resource Editor
2.​ First of all, immediately save (CTRL+S) the package somewhere in your Mod’s Packs

directory. We’re saving the pack under the Block_Head_Modularity.rpk file name.
3.​ Create a new Category by clicking on New next to the Category: dropdown menu
4.​ Name it Default and click OK
5.​ Go to Content > Resource Packs in the upper bar
6.​ Click the Add button and navigate to Content\Title\Packs\Unit_Modularity in the base

game’s directory hierarchy. Open the Shared_Modularity.rpk file and then do the same
for the Hero_Customization_Categories.rpk file, in the same directory.

7.​ Click OK again, the pack should refresh
8.​ Do the same for Content > Libraries and choose the Block_Head_Meshes.clb that you

have saved out earlier. The pack should refresh again.
9.​ Select the 0th entry and change the Type: dropdown under Main to Modularity: Provider.

Click on New next to it.
10.​Rename the resource to Helmet Type: Block Head
11.​Change the Entity Type property as follows: Category = Category Types, Resource =

Category Type: Unit
12.​Click the yellow/orange square next to the Tags property
13.​A new dialog should open, right-click anywhere in the window and choose Add
14.​Search for RemoveHair and select it. Then, click OK and OK again.

15.​Select the empty resource entry at index 1 and change the Type: dropdown under Main
to Modularity: Component. Click on New next to it.

16.​Rename the resource to Component: Block Head
17.​Click the yellow/orange square next to the Unlocked By Providers property
18.​Search for Helmet Type: Block Head and add it to the list, then click OK
19.​Expand the Unlocked By Category property and change the fields as follows: ​

Category = Categories, Resource = Category: Helmet
20.​Now click the yellow/orange + button and choose Mesh
21.​Right-click the 0th entry and choose New
22.​Expand the Mesh property in the right hand panel
23.​Change the fields as follows: ​

Library = Default { BLOCK_HEAD_MESHES }, Resource = Block_Head_Diffuse
24.​You should now see the mesh in the Viewport
25.​Select the empty resource at index 2 and change the Type: dropdown under Main to

Customization Item. Click on New next to it.
26.​Rename the new resource to Customization Item: Block Head
27.​Change the following properties:

a.​ Category: Category = Leader, Resource = Leader: Helmet
b.​ Provider: Category = Default, Resource = Helmet Type: Block Head
c.​ Sort ID: 1000

28.​Save the library (CTRL+S)
29.​Go back to the Package Manager and go to Content > Resource Packs
30.​Add the newly created Block_Head_Modularity.rpk

You can now save your mod, set up a Playset for it and start up the game. As we’ve given the
head item a very high sorting ID, it’ll be the last entry in the Faction Creation’s Appearance tab.
If it doesn’t appear, please make sure that you’ve added the package in step 30.

Making a Story Event
Story events are narrative pop-ups during gameplay where a situation is laid out and several
choices are offered to the player with gameplay consequences. These are completely new in
Age of Wonders 4 and so the resource set up for it is also new. They use the Scripting system to
identify when they should appear, what happens by default and what each button’s effects are! It
is advised to also look into how to Adding Text since Story Events need plenty of custom text!

Story Events Consists of

-​ Event Texts
-​ Title
-​ Header Text
-​ Body Text
-​ Footer Text
-​ Button(s) Text

-​ Text Variants
-​ These can be set up so that certain text entries get replaced by different text if

conditions are met, such as if the hero of the event is a ruler.

-​ You can add alternative text entries when these conditions are met by right

clicking on any of the text entries and selecting Add [textvariantname]​

-​ Scene Visuals

-​ Scene Settings, you can link to existing ones, or set up a Story: Scene
Settings and Modularity: Scene

-​ Story Tags, which uses the tag system to further modify the scene visuals
-​ Scene Type

-​ This is essentially the category this story event belongs to, it is used to determine
the rarity and pace of the event. Certain categories will not guarantee that the
event will spawn every time the condition is met, which is how we do “random”
events without spawning them every turn. You can either link to an existing one
or create your own Story: Event Type

-​ Script - On Trigger
-​ The script that determines when this story event should start. Unlike normal

scripts, these scripts also have Events and Setups
-​ Event is where you can determine the exact Event(s) the script should listen to.

-​ Under an Event you can set up additional conditions
-​ Events often say which data they will pass on in the event, such as

Player[Triggering].
-​ Setup is where you can set up variables to use in this story event (or in a global

pool for later). It’s often useful to store the things like triggering stack or player for
later use. The Setup part of a script will still happen even if Conditions aren’t met.
Unless they are conditions in Event

-​ Conditions which is where you can check for extra conditions to see if the event
should be valid. None of the actions and the story event itself will trigger if the
conditions aren’t met.

-​ Actions where you can add special script actions that can affect the game or
data, such as destroying structures, spawn units, or set diplomatic standings.
These will go off as soon as the Story Event is valid and triggered (so before any
choice is made by the player)

Example of a Story event On Trigger script using Macros

-​ Script - Post Event

-​ A script that triggers when the event is resolved (so any of the choices were
clicked by the player).

-​ Buttons
-​ You can dynamically add buttons by right clicking on the Buttons field and

clicking Add
-​ Each button has:

-​ Type which determines the icon presented next to the event. Useful for
letting the player know what kind of choice this is.

-​ Text Button which is the text of the button, can also have variants when
there are Text Variants set up.

-​ Script the script contains Conditions to determine if this button can be
pressed, and Actions to execute if the button is pressed by the player.

-​ Condition Not met Behavior, what the button should do when the
Conditions in the Script are not met

-​ Disable will simply remove the button from the list
-​ Hide will grey out the button and means the button cannot be

clicked
-​ Hide with Highlight does the same as Hide, but will highlight the

button in yellow to communicate the importance of this button.
-​ Tags is where you can add tags that can be used to identify this event by the event flow

system. Check tags under Ranking for the kind of tags you can add.
-​ Sentiment whether this event is considered positive, negative or neutral for the player.
-​ Rarity is the priority for this event when multiple events are valid under the same

conditions. Highest rarity events will take priority over more common ones.
-​ Pace is how much impact this event has on the flow. A heavier pace setting means that

the game will try to spawn less events and/or less heavy events for the player
afterwards. Best kept at Inherited which takes the linked Event Type pace value.

-​ Weight Filter and Override Weight Filter Value. Used to apply an additional priority
filter through events on top of Rarity. Best to keep this on Inherited and False

To Create a new Story Event, follow these steps:
1.​ Create the text for the Title, Header, Lore, Footer and each Button by following Adding

Text
2.​ Open Resource Editor and create a new .rpk file
3.​ In this new file, go to Content -> Language -> Add and select your mod’s .mo file
4.​ Also go to Content -> Resource Packs -> Add, find and select Events_Core.rpk.

a.​ This contains a lot of handy macros and resource dependencies often used for
events such as premade scenes and

5.​ create a new Category and in it, create a Story: Event resource.
6.​ Set up this story event

a.​ Assign text to each text entry.
b.​ Link or create Scene Settings
c.​ Set the Event Type
d.​ Add Buttons and link text to them.
e.​ Set up Scripts for at least the Script - On Trigger to indicate when the event

should spawn. But also add Scripts to buttons to determine the outcome when
clicked.

f.​ Set up the Event’s Tags, Sentiment, Rarity, Pace and Weight Filter, where
possible, you may want to just choose Inherited on some options.

7.​ Make sure this new .rpk file is loaded in with your mod’s .acp file.

Your new event should now be ready to appear in game! Remember to check existing scripts
and events . Event Types may also cause your event to not always appear even when trigger
conditions are met due to cooldown, pacing or new game time outs.

Tip: while scripting, there are a lot of MACROs you can use for a lot of event actions. To add a
Macro in your script, select a Core - Macro entry when choosing a Condition Type, Event Type,
Action Type or Setup Type to add to your script. Then you can select from existing macros to
link.

Adding Audio
The creating and mixing of Audio in Age of Wonders 4 is done through FMOD Studio 2.0. The
assigning these sound effects to actions in game is done though the Resource Editor. This
guide will not go into detail about working in FMOD Studio.

Project Setup
1.​ Download the .fspackage file from the example files provided alongside this guide.
2.​ Open FMOD Studio and open the .fspackage file.
3.​ FMOD Studio will give a popup that some folders are missing. This is normal, just press

Recover and the folders will be created for you.

4.​ Next you’ll need to add a bank for your mod and mark it as a Master Bank. When
creating new events you’ll want to assign them to this bank.

Resource Setup
After you’re done making/editing events, you’ll have to build your banks and copy them over to
the mod’s Audio Folder.

1.​ In the package manager, open the resource editor and make a new package.
2.​ Add the package to the Package Manager via Content > Resource Packs > Add.
3.​ In the Resource Editor, go to Content > Audio > Add and add the bank files from the

mod’s Audio Folder. This gives you access to the audio events in the bank.

Changing Action Sound Effects
1.​ In the Resource Editor, add the resource Settings: SFX Links to your Resource Pack.
2.​ Scroll down the properties of the newly created resource and set the Priority to

something higher than 10. This value determines which version of the resource
overwrites which. This is especially important when a player has multiple mods
enabled.

3.​ By clicking the orange square of one of the properties you can assign it an audio event
to override the normal one.

Changing Interface Sound Effects
1.​ In the Resource Editor, open Audio.rpk in \Title\Packs\. This pack contains all the base

game’s audio links and settings.
2.​ Link any custom made banks you may have as described in the previous section.
3.​ Switch to the category Noesis SFX Tags.
4.​ Find the tag you want to change. These tags come from the UI’s .xaml files and are

automatically found by the game when loading in the UI.
5.​ By clicking the orange square of the Sound property you can assign it an audio event to

override the normal one.

Adding Music
1.​ In the Resource Editor, add either the AoW Music: Strategic ONLY music or AoW

Music: Tactical ONLY music resource.
2.​ By clicking the orange square of the Music Link property you can assign it an audio

event.

Optional: Strategic music has a Tag Filter property that can be used to determine the
appropriate moment for this music to play. To gain access to the tags, you’ll have to link the
Audio.rpk found in \Title\Packs\. Go to Content > Resource Packs > Add to add the Audio.rpk.

Creating a Story Region
For this guide, we will be making an example Story Region that will be loaded into the game
during map creation. This Story Region will be hand crafted in LevelEd with a unique layout and
features.

Creating the Region

1.​ Creating a new map

a.​ Open the Level Editor from the Package Manager.
b.​ Click File > New Map (hotkey Ctrl + N).
c.​ Navigate to the Story Region tab in the dialog.
d.​ Here you can set your name, and a name for your region (this is for the editor

only).
e.​ You can adjust the map size now, or do this later using the Resize controls at the

top of the screen.
f.​ Hit OK.

2.​ We now start with a blank canvas of a map, and we want to start creating our own region
in it.

a.​ Determine if you want to make a region for the Surface/Worldmap or the
Underground and the select the matching Map Level in the toolbar at the top.

b.​ Navigate to the Sector tab.
c.​ Select a hex where you would like to start your region.
d.​ Hit New Sector (hotkey N) on the right side. This creates a minimal size sector.
e.​ Click Edit Sector (hotkey E), and start adding hexes to your sector until it

matches the shape you like.
f.​ If you want, you can move the center of the sector (this is where important

structures are placed) by using shift + left mouse button to change its location.
3.​ Now that we have a shape for our first sector, we will start painting it.

a.​ Select the Paint tab on the right side.
b.​ Select a Theme and an Overlay that you would like to paint into the region.
c.​ Paint by clicking and dragging across the hexes that you want to apply your

current brush to.
d.​ On the top you can change the size of your brush, for when you need to paint

large areas at once.
e.​ If you’re looking for a bit more control over the visuals, some Theme/Overlay

combinations have multiple Decorations available. A major one here is the
Grassland overlay giving access to a Rocky decoration, which would unlock the
ability to build a quarry in the sector. Or the different variation of forest available
in Tropical.

f.​ Near the bottom of this tab there are some options to Randomize, this lets the
RMG take over parts of the region’s theme and overlay, based on what you mark
them as. (Requires additional setup in the resources later)

g.​ Once you’re happy with the look of your sector, we can either continue by adding
more sectors to your region, similar to step 2. Or we can start placing objects in
our region.

4.​ There are a number of things you can place in a sector, Structure, Markers and
Pickups.

a.​ Select the relevant tab on the right of the kind of object you want to place.
b.​ Click on one of the objects in the list that you want to place.
c.​ While hovering your mouse over a hex, it will either show green if it can be

placed, or red if it’s blocked.
d.​ Let’s place an ancient wonder in the center of the sector.
e.​ An overview of a number of settings appears on the left side of the screen.
f.​ We can change for instance the Adventure Set used in this ancient wonder, or

set the Alias so we are able to access it later through scripting once it’s added in
game.

5.​ Next up is the height of the region.
a.​ Select the Sculpt tab.
b.​ There are a number of ways to control the height of your terrain. The left mouse

button is used to raise it, and right to lower it based on your selection in this tab.

c.​ Use these tools to sculpt a good height for your region, as this transfers over into
the game.

6.​ Before we’re finished with our region we need to make sure our sectors are connected
and correctly grouped.

a.​ Select the Sector tab on the left side of your screen.
b.​ Parent all sectors you want to group together underneath the same region, by

dragging them onto the region’s name.
c.​ Here you can also remove (hotkey Delete) any sectors or regions you don’t want

to have in your map anymore.
7.​ Now that our region looks exactly the way we want it to, it’s time to export it.

a.​ Select the Region tab on the left side of the screen.
b.​ Select the Region you want to export and hit Export Region.
c.​ Create a Regions folder, and save the file there.

Loading the Region
1.​ Create a new package.
2.​ Make sure to include Content\Title\Packs\Strategic\RMG_SECTORS_STRATEGIC.RPK

in Content > Resource Packs
3.​ Next include your newly exported region in Content > Regions
4.​ Create a RMG Region Definition resource.
5.​ Select Sector Type Definition: Core - Story (Land) as the Region Type Definition. This

is the basic type that will spawn your region on the surface.
a.​ Sector Type Definition: Core - Story (Underground) - is used for spawning it in the

Underground
b.​ There are a number of variations for the Umbral all starting with Sector Type

Definition: Shadow Realm
6.​ Select your story region in the Story Region File
7.​ Optional, set Guaranteed Spawn to true to make sure this region shows up while

testing.
8.​ Setup the Theme filter

a.​ Right click the Theme Filter and add the Themes present in your Region.
b.​ Note that this is also used if you’ve setup randomization of themes in your

region, it will select one of these to apply
9.​ Create a RMG Sector Definition List resource, and extend the Sector Definition List: All

list
10.​Add your Region to the Include List

At this point we’ve created a region and setup the basic resource needed to have it be loaded
into the game.
If you are looking for examples of other Story Region created, look for
Content\GiantKings\Packs\Strategic\RMG_Sectors_Strategic_GiantKings.rpk

Glossary
Package Manager: The tool used to create new mods. Can be found next to the AOW4.exe in
the game files.
Resource Editor: The editor used to edit existing content and to add new content for mods.
Resource Package: Often shortened to Package or rpk. A package is used in the Resource
Editor. It is a collection of resources that is grouped together into a single file with the .rpk
extension.
Resource: A resource is a single line of logic found in the Resource Editor. It can contain
anything depending on the resource from Units to Targeters for Spells to definitions of entire
gameplay systems.
Category: These are tabs found in Resource Packages. These are purely for organizational
purposes.
Playset: Used in the Paradox Launcher. It is used to select which mods you want to have active
when launching the game.

	Age of Wonders 4 Official Modding Guide
	Introduction
	Modding Rules
	Getting Started
	Using Package Manager
	Creating a new Mod
	Publishing a Mod
	Testing a Mod
	Mod Compatibility and Load Order
	Debugging with CLog
	Common types of errors to look for:

	Editing Existing Packages
	Resource Browser
	Adding New Content
	Adding Packages
	Adding Resources

	Adding Content Libraries
	FBX Notes
	Preparing For Export - Regular Meshes
	Importing - Rigs
	Preparing For Export - Skinned Meshes

	Modularity System Overview
	​Adding Text
	Adding a New Tome (Example Mod)
	Tome Setup
	Adding Research Skills
	Adding a Strategic Spell
	Adding a Tactical Spell
	Adding a Unit Enchantment
	Adding a Transformation
	Adding a City Structure
	Unlocking a Unit
	Adding a Special Province Improvement

	Adding a Hero Skill
	Sieges
	Siege Projects

	Adding a Cultures
	Culture Setup
	Culture Research
	Culture City Structures/Special Province Improvements
	Culture Hero Skills

	Units and Heroes
	Creating a new Unit
	Make a unit recruitable
	Creating a Passive Property
	Creating an Active Ability
	Creating a Status Effect

	Adding Race Traits
	Body Traits
	Mind traits
	Society Traits

	Adding Realm Traits
	Geography Traits
	Clime Traits
	Inhabitants Traits
	Presence Traits
	Misc Traits

	Making/Sharing Premade Factions
	Adding Leader Customization Items
	Making a Story Event
	Adding Audio
	Project Setup
	Resource Setup
	Changing Action Sound Effects
	Changing Interface Sound Effects
	Adding Music

	Creating a Story Region
	Creating the Region
	Loading the Region

	Glossary

